ãã¼ã¿åæLTä¼ç¬¬äºåã§çºè¡¨ããéã®è³æã§ãã youtube: https://www.youtube.com/watch?v=jDZwX3jxhK4 conppass url: https://kaggle-friends.connpass.com/event/214854/ github repository: https://github.com/fkubota/bunseki_compe_LT_02
ãã¼ã¿åæLTä¼ç¬¬äºåã§çºè¡¨ããéã®è³æã§ãã youtube: https://www.youtube.com/watch?v=jDZwX3jxhK4 conppass url: https://kaggle-friends.connpass.com/event/214854/ github repository: https://github.com/fkubota/bunseki_compe_LT_02
Image Processing in WebAssembly Photon is a high-performance image processing library in WebAssembly that runs both natively and on the web. Features Photon outperforms even the fastest of libraries, and is powered with Rust, allowing for safe and secure image processing. Web-Assembly Friendly For web-based image processing, Photon is 4-10x faster than JS, leading to faster results, and less lag.
a language for fast, portable computation on images and tensors Halide is a programming language designed to make it easier to write high-performance image and array processing code on modern machines. Halide currently targets: CPU architectures: X86, ARM, MIPS, Hexagon, PowerPC, RISC-V Operating systems: Linux, Windows, macOS, Android, iOS, Qualcomm QuRT GPU Compute APIs: CUDA, OpenCL, OpenGL Com
ããæ¥ã®ãã¨ãå¾è¼©ãã¡ããããªãã¨ãè¨ãã¾ããã ãããå¼ã®ã³ããã©ã³ãã ã«ä¸¦ã³ããããç¡éã«ããå¼ã楽ãããã®ã§ã¯ï¼ã çé¢ç®ã«è¨ç®ãã¦ã¿ãã¨ã10ã®15ä¹ãããã®çµã¿åãããã§ãããã¨ããããã¾ããã ãã®è¨äºããå¼ã¢ããã³ãã«ã¬ã³ãã¼20æ¥ç®ã¯ããããªç¡éã«ããå¼ããã®ããããã®ã·ã¹ãã ãçé¢ç®ã«ä½ã£ã¦ã¿ã話ããã¾ãã ã³ãã®åãåºã 漫ç»ã®ã³ãã並ã³æ¿ããããã«ã¯ãã³ãããã©ãã©ãªç»åã¨ãã¦åå¨ãã¦ããªããã°ãªãã¾ããã ãªã®ã§ãã¾ãã¯èªçã§é»ååãããæ¸ç±ãã³ãã®ç·ã«ãã£ã¦åãåºãã¦ããå¦çãèªååãããã¨ã«ãã¾ããã ä¸ã®å³ããµã¤ãã®4ã³ãã®1ãã¼ã¸ã§ãããããã®æ ç·ãèå¥ãã¦ã1ãã¼ã¸ãã8æã®ã³ããåãåºãã¦ããæ¹æ³ãèãã¾ãã ããå¤æã§ç´ç·æ¤åº OpenCVã¨ããç»åå¦çã®ã©ã¤ãã©ãªã«ç´ç·ãæ¤åºãããã¼ã«ããã£ãã®ã§ãã¾ãããã試ãã¦ã¿ã¾ããã ããçµæã¯ãã®ã¨ããã
Or to be technical, I made a thing that makes things like that thing. (If your device doesnât render it, it looks like this.) Backstory: a month and a half ago I left my job to make an indie game. One of the many things on my to-do list was âLearn shader programmingâ, and around that time I ran across this blog post by Roger Alsing about using genetic algorithms to create images. So I tried the sa
æ¦è¦ ç»åè£å®æè¡ã¨ã¯ç»åã®æ¬ æé¨åããããããåãåãããæè¡ã®ãã¨ãããããã®æè¡ã¯å¤ãããè·äººæã¨ãã¦ç¥ãããå·ãã åçã®ä¿®å¾©ãåçããã®ããããã¼ã®é¤å»ãªã©ã«åºãç¨ãããã¦ããã è¿å¹´ã§ã¯ç»åè£å®ãèªåçã«è¡ãæè¡ã®çºå±ãç®è¦ã¾ãããHays ãã¯ã風æ¯ç»åã®æ¬ æé¨åã«åãç»åã風æ¯ç»åãã¼ã¿ãã¼ã¹ããæ¤ç´¢ãããã¨ã§ã風æ¯ç»åã®ä¸é¨ãã¾ã£ããéãï¼ãããè¦ãç®ã«ã¯èªç¶ãªï¼é¢¨æ¯ç»åã¸ã¨ç½®ãæãããã¨ã«æåãã¦ããããã®ãããªå¤é¨ç»åãã¼ã¿ãã¼ã¹ãç¨ããææ³ã¯ä¸ç¨®ã®ãè³å è£å®ãã¨ãã¦æ©è½ãã¦ããã¨ãããã ã¨ããã§ãä¸è¬ã«ãè³å è£å®ãã®ä¸»è¦ãªé©ç¨å ã¯çè¡£ç¶æ ã®ç¡çè¡£åã§ãããå½¼ãã®ææ³ã®ãã¡ã風æ¯ç»åãã¼ã¿ãã¼ã¹ã裸ä½ç»åãã¼ã¿ãã¼ã¹ã¸ã¨ç½®ãæãããã¨ã§ãçè¡£ç»åã®è£¸ä½åãè¡ãããã¨ãæå¾ ãããã æ¬ããã¸ã§ã¯ãã§ã¯ä¸è¨çæ³ã®å®è£ ãè¡ãããã®å®é¨çµæã示ãã ãªããæ¬ããã¸ã§ã¯ããã¼ã¸
Note that all plenary presentations will be video-recorded and available on the Signal Processing Society SigView online training database in late 2015. Deep Learning Yoshua Bengio Professor, University of Montreal Department of Computer Science and Operations Research Canada Research Chair in Statistical Learning Algorithms TIME Monday September 28, 2015 Abstract & Biography + Abstract The abstra
ããã«ã¡ã¯ãæ²³æ¬ã§ãã åã¯ãµã¤ã¼ãªã¤ã«è¡ãã¨ã¾ããããºã¡ãã¥ã¼ã®ééãæ¢ãã解ããã§ããã ä»åã¯é£ããããã®ã§ã大人ã®åï¼ï¼ç»åå¦çï¼ã§è§£æ±ºãããã¨ã«ãã¾ããã 2014å¹´9æçãã¿ããªããã£ã¦ã¿ããï¼ ï¼ä»¥ä¸ãééãæ¢ãã®çããåºã¦ãã¾ããè¦ãããªã人ã¯âã®ç»åã§é å¼µã£ã¦ããèªãããï¼ ããæ¹ ããããæ¸ãã¦ã¾ãããå·¦é¢ã¨å³é¢ã®éãé¨åãè²ã®å·®åããè¦ã¤ãã¦ãã ãã§ãã ç´ã®æªã¿ãå¸åããããã«ãå°ãããããããã¨ããã¦ã¾ãã (1) ééãæ¢ããã¼ã¸ã®åçãæ®ã âã®åçã§ããæ®éã«iPhoneã§æ®ãã¾ããã (2) ãã¼ã¸é åãæ½åºãã ç»åãããã¼ã¸ã®é¨åãè¦ã¤ããå¿ è¦ãããã¾ãã ä»åã¯é¢åãªã®ã§ãå·¦å´ã¯æä½æ¥ã§æå®ãã¾ããã è§ãæä½æ¥ã§ã¿ã°ä»ããã¦ã»ã»ã» ãã£ã¡ã¯æä½æ¥ã å°å½±å¤æã§å°å½¢è£æ£ãã¾ããOpenCVãªãWarpPerspectiveã§ãã å°å½¢è£æ£ãã¦ããç´ã
é¡ä¼¼ç»åæ¤ç´¢ææ³ã«ã¤ãã¦ç°¡åã«ã¾ã¨ãã¾ããã ã¯ããã« ç»åæ¤ç´¢ã«ã¯ä¸»ã«2種é¡ã®ææ³ãããã TBIR (Text Based Image Retrieval) ç»åã«ããã¹ããã¼ã¿ãç´ä»ãããã¦ãã¦ãããã¹ããå ã«æ¤ç´¢ãã CBIR (Content Based Image Retrieval) ç»åã®ç¹å¾´éãåºç¤ã¨ãã¦æ¤ç´¢ãã ã©ã¤ãã©ãª Feature Extraction Library - FELib http://appsrv.cse.cuhk.edu.hk/~jkzhu/felib.html ä¸è¨ã®ï¼ã¤ã®ç¹å¾´ãæã¤ç»åããç¹å¾´éãæ½åºã§ããã©ã¤ãã©ãªã§ããã Color histogram, color moments. ã«ã©ã¼ãã¹ãã°ã©ã ã»è²çµ±è¨) Edge histogram. 輪éã®ãã¹ãã°ã©ã Gabor wavelets transform. Wavelet tra
æ¦è¦ è¿å¹´ãèªç§°ä½æ²å®¶ã»ä½ææ²³å å®æ°ã¨å¤è¦ã®é ·ä¼¼ãã人ç©ãå¢å ããå½¼ãã¨ä½ææ²³å æ°ã¨ãèªåçã«è¦åããã·ã¹ãã ã®éçºãæã¾ãã¦ãããä¸æ¹ã§ãä½ææ²³å æ°ã¯ä½æ²æã¨è¬ç½ªä¼è¦æã§å¤§ããå¤è¦çã«å¤åãããã¨ãç¥ããã¦ãããä½ææ²³å æ°ãè¦åããã·ã¹ãã ã¯ãã®ãããªå¤åã«é å¥ã§ããå¿ è¦ããããããå®ç¾ã¯å®¹æã§ã¯ãªããæ¬ããã¸ã§ã¯ãã§ã¯ãé«åº¦ãªã³ã³ãã¥ã¼ã¿æè¡ãæ´»ç¨ããä½ææ²³å æ°ãé©åã«è¦åããã·ã¹ãã ãéçºããã èæ¯ èªç§°ä½æ²å®¶ã»ä½ææ²³å å®æ°ãä¸éãè³ããã¦ãããä½ææ²³å å®æ°ãå¼ãèµ·ãããæ§ã ãªåé¡ã®ãã¡ãã£ã¨ãåä»ãªãã®ã¯ããä½ææ²³å å®æ°ã«ãã£ãããªäººç©ãå¤ããããã¨ãããã¨ã§ããããã¨ãã°ããã¥ã¼ã¸ã·ã£ã³ã® Revo æ°ã¯ç¥ããªã人ã«ãããªãã®CDã¯ããäºåº¦ã¨è²·ãã¾ããããªã©ã¨è¨ããããªã©ã®é¢¨è©è¢«å®³ã訴ãã¦ããã漫ç»å®¶ã®ã¿ãããã ãæ°ã«ã¤ãã¦ãã¿ã¯ã·ã¼é転æãããä½ææ²³å ããã§ããï¼ãã¨å·æã«å
é²ç¯ã«ã¡ã©ã«æ ã£ãä¸å¯©ãªè»ãã§ãç»åãç²ãã¦ãã³ãã¼ãã¬ã¼ããèªããªãââããããªææ»å¡ã®æ©ã¿ã解決ããã½ãããéçºãããå ¨å½ã®è¦å¯ã§å°å ¥ãé²ãã§ãããä½ã£ãã®ã¯ä¸äººã®è¦å¯è·å¡ãç»åãé®®æã«ããã®ã§ã¯ãªããç §åããå´ã®æ°åãã¼ããé転ã®çºæ³ãçããããããè±èªåãç¥ãã¦ãPRESLLIï¼ãã¬ã¹ãªã¼ï¼ãã¨åä»ããããä½è§£å度ãã³ãã¼æ¨å®ããã°ã©ã ã¯ï¼ï¼ï¼ï¼å¹´ã大åçè¦ãéçºãå°å ¥ãããåçè¦ãï¼ï¼ï½ï¼ï¼å¹´ã«ãã¬ã¹ãªã¼ã§è§£æããï¼ï¼ã®äºä»¶ã§ã¯ãï¼ï¼ä»¶ã§æ£ãã容çè»ä¸¡ã®ãã³ãã¼ããå¯è½æ§ãé«ããã¨ãªã¹ãã¢ãããã容çè æ¤æã«çµã³ã¤ããããä»çµã¿ã¯ããã ãé²ç¯ã«ã¡ã©ç»åã®æããç²ããè§åº¦ã«å¿ãã¦ããã³ãã¼ãã¬ã¼ãã«ä½¿ããã¦ããï¼ï½ï¼ã®æ¸ä½ãã¼ããå å·¥ï¼çä¼¼å£åï¼ãæ½ããã¼ããããã»ã»ã»ï¼ããããï¼ï¼ï¼ï¼ãã¾ã§ã®ãã¹ã¦ã®ãã¿ã¼ã³ã¨ç»åãèªåç §åããä¼¼ã¦ããé ã«ä¸ä½ï¼ï¼ãã¿ã¼ã³ãã¯ããåºããå®å ¨ãªç¹å®
3. ãã®è³æã«ã¤ã㦠3 ï½ ãã®è³æã¯ãã¨ããã客æ§ã®ã³ã³ãµã«ãã£ã³ã°ç¨ã«ä½æããã ã®ã§ãã ï½ ã客æ§ãã許å¯ãå¾ã¦å ¬éãã¦ãã¾ãã ï½ æ¥åä¸é¢ä¿ãªããããªåéã®èª¬æã¯çç¥ãã¦ãããããã³ã³ãã¥ã¼ ã¿ãã¸ã§ã³ã®å ¨ä½ç´¹ä»ã¨ãã¦ã¯ãã©ã³ã¹ãæ¬ ãã¦ã¾ãã ï½ ãã³ã³ãã¥ã¼ã¿ãã¸ã§ã³ã£ã¦ãããªãã¨ã§ãããã ï¼ã ãã¼ï¼ï¼ãã¨æã£ã¦ãããã®ãç®çã§ãã ï½ è³æä¸ã«URLãåãè¾¼ãã§ããã®ã§ãåãè¾¼ã¿å ã«ãããã¢åç» ãªã©ãè¦ããã¨ããããããã¾ãã ï½ åèã«ä¸ããè«æã¯ãstate-of-the-artãªãã®ãããèãæ¹ ãããããããªãã®ãé¸ãã ã¤ããã§ãã ï½ èªåãå¾æã§ãªãåéãå«ãã®ã§ã誤ã£ã¦ããã¨ãããªã©ã¯ åªããææãã¦ããã ããã¨ãããããã§ãã 4. èªå·±ç´¹ä» 4 ãã¯ãã«ã«ã»ã½ãªã¥ã¼ã·ã§ã³ã»ã¢ã¼ããã¯ã çå· åä¹ï¼ã¿ãªãã ãããï¼ ããªã¼ã¨ã³ã¸ãã¢ï¼ãã¸ã§ã³ï¼I
ããã¯ã¬ã¤ãã¬å宿2!!ã¢ããã³ãã«ã¬ã³ãã¼ã®4é±ç®ã®è¨äºã§ãã æ¢ é¨çã£çãã§ã±ã£ã¨ããªã天æ°ãç¶ãã¾ããã¬ã¤ã®è¿½è·¡ã®å ·åã¯ãããã§ããããã 7æã«å ¥ã£ãã¨ã¯ããã¢ããã³ãã«ã¬ã³ãã¼ã¯ã¾ã ã¾ã åºç¤ã å¾ã®ã»ãã«ã¬ããªäººãããã£ãããã®ã§ã¬ã¤ãã¬ã¨é¢ä¿ããã®ãå¾®å¦ãªãã¿ã§ãã¾ã 許ãããã¨ä¿¡ãã¦ããã¾ãã ãã¦ãã¬ã³ããªã³ã°ãã¦ããã¨ãã¯ã¹ãã£ã欲ãããªã£ã¦ãã¨ãããããã§ãã«ã¼ãã¤ãã£ã¦ã¿ãããã¾ãã ããã«é£½ãã¦ããããã¤ãºã§ãããã¤ãºã§ãããã!? ãããã¤ãºãããã ãã§ããã¯ããã¯CGããããªãã¾ãã ããã模æ§ã ãã«ã¨ã©ã¾ããããã³ãããã£ã¹ãã¬ã¤ã¹ãããã·ã¼ã¸ã£ã«ãªãªãã¸ã§ã¯ãã¨ä½¿ãéãããããããç´ æµãªãã¤ã§ãã ãããªããã§ã¡ãã£ã¨ãã¤ãºã§ãä½ã£ã¦ã¿ãããã¨æãã¾ãã ã¨ãããã2Dã®ç»åãã¤ãããã¨ã«ãã¦ãæ·±ããã¨ãèããã«ä¹±æ°ã§åãå°½ããã¨ãããªæãã«ãªãã¾ãã flo
MOONGIFTã¯ãªã¼ãã³ã½ã¼ã¹ã»ã½ããã¦ã§ã¢ãç´¹ä»ããããã°ã§ãã2021å¹´07æ16æ¥ã§æ´æ°åæ¢ãã¾ãã Googleã®é¡ä¼¼ç»åæ¤ç´¢ã使ãã¨ãä¾ãã°ã©ããã®ãµã¤ãã§è¦ãç»åã®ãã¿å ï¼ããã«è¨ãã°å å·¥åï¼ã®ç»åãæ¢ããã¨ãåºæ¥ã¾ããããã«ãã£ã¦æ¹å¤ãè¦ç ´ã£ãããä¸æ¬¡ã½ã¼ã¹ã«ããããã¨ãåºæ¥ã¾ããããã ãã§ãªããé¡ä¼¼ç»åæ¤ç´¢ã¯è²ã ãªå ´é¢ã§å½¹ç«ã¤ã§ãããã 大éã«ããåçã®ä¸ããé¡ä¼¼ããåçãè¦ã¤ãåºãã°ãããã ãã§é åããã³ã³ãã³ãã«ãªãã¾ãããããªæè¡ãæä¾ããã®ãLIREã§ãã LIREã®ä½¿ãæ¹ ãªã³ã©ã¤ã³ãã¢ãå ¬éããã¦ãã¾ãã®ã§è¦ã¦ã¿ã¾ãããã é©å½ãªåçã®é©å½ãªãªã³ã¯ãé¸ãã§ã¿ã¾ãããã ããããã®ã¢ã«ã´ãªãºã ã«ãã£ã¦åºã¦ããçµæãããã£ã¨å¤ããã®ãé¢ç½ãã§ããããããå¿ è¦ã«å¿ãã¦é¸æããã°è¯ãã§ããããåºã¦ããåçãé çªã«ã¯ãªãã¯ãã¦ããã ãã§ãé¢ç½ãããããªã©ã¤ãã©ãªã§ãã
7. ææä»ãæå°äºä¹æ³ 6 ð = ð¨ð + ð 2 2 2 2 HxAxy ï¬ï«ïï½I ææä»ãæå°äºä¹æ³ y: 観測ç»å x: çã®ç»å A: å£åã¢ãã« n: ãã¤ãº H: ãã¤ãã¹ãã£ã«ã¿ 尤度 èªç¶ç»åã® äºå確ç äºå¾ç¢ºçæ大å ï¼MAPæ³ï¼ 観測 ãã è¦³æ¸¬ä»¥å¤ ãã 8. äºå¾ç¢ºçæ大åã¨ææä»ãæå°äºä¹æ³ 7 2 2 2 2 2 22 2 22 11 ' HxAxy HxAxy ï¬ ï¨ï³ ï«ïï½ ï«ïï½ I I )()|()|( xxyyx ppp ïµ äºå¾ç¢ºçï¼ãã¤ãºã®å®çï¼ å°¤åº¦äºå¾ç¢ºç ïº ïº ï» ï¹ ïª ïª ï« ï© ï ïïµ 2 2 2 2 exp)|( ï³ Axy xyp ïº ïº ï» ï¹ ïª ïª ï« ï© ïïµ 2 2 2 2 exp)( ï¨ Hx xp äºå確ç 尤度ï¼ãã¤ãºã¢ãã«ï¼ï¼ ã¬ã¦ã¹ãã¤ãºãä»®å® ï¼èªç¶ç»åã®ï¼äºå確çï¼ æ»ãããªç»åãä»®å®
ãªãã¨ãªã使ããããªã®ã§æ¸ãã¾ãããç»åãåãåãã¨ãµã¼ãã«éä¿¡ãããµã¼ãã¯é¡èªèãã¦çµæãè¿ãã¾ãã以ä¸ã¿ãããªæãã§ãã以ä¸ã¯ããã§å®éã«è¦ããã¨ãã§ãã¾ããã¯ã©ã¤ã¢ã³ãå´ã¯ãµã¤ãã« Javascript ã§æ¸ããã¦ãã¾ãããã¡ã¤ã«ãåãåã£ã¦ã¢ãããã¼ãããããã« Dropzone.js ã¨ããã©ã¤ãã©ãªã使ã£ã¦ã¿ã¾ããããµã¼ãå´ã¯ Python/Django ã§æ¸ããã¦ãã¾ãããªã Python ãã¨ããã¾ãã¨ãã¾ãã使ãæ £ãã¦ããããã§ããDjango ã¯æè¿ã¯ãã¾ãæµè¡ããªãããã§ããããããã¡ãã£ã¨èª¿ã¹ã¦ã¿ãæãã§ã¯ Python ã® Web ãã¬ã¼ã ã¯ã¼ã¯ã®ä¸ã§ã¯ä¸çªå°æ¥æ§ããããããªå°è±¡ã§ãããä»åã¯æ¬å½ã«å°ããããã°ã©ã ã§ããããæããã«å½¹ä¸è¶³ï¼æ£ããæå³ã§ï¼ã§ãããç»åãã¡ã¤ã«ãã¢ãããã¼ããã¦ããã¯ã¨ã³ãã§å¦çã§ããã¨ãããã楽ããã§ããããä¸å¿ã³ã³ãã¥ã¼ã¿ãã¸ã§ã³
åºè« è¿å¹´ãå ¨è¾ã®ä½æ²å®¶ã¨ãããä½ææ²³å å®æ°ãã´ã¼ã¹ãã©ã¤ã¿ã¼ãç¨ãã¦ãããã¨ãåç½ããåæã«é害è æ帳ã®ä¸æ£å給ãçããã大ããªåé¡ã¨ãªã£ã¦ããããã®å ±éã®ä¸ã§ãä½ææ²³å æ°ã®å®¹å§¿ãå¤ãã®èå人ã¨é ·ä¼¼ãã¦ãããã¨ã2æã®ä¼è¦ã¨3æã®ä¼è¦ã§å¤è¦ã大ããå¤åãããã¨ã話é¡ã¨ãªã£ãã å ·ä½çã«ã¯ã2æã®ä¼è¦ã®æç¹ã§è©±é¡ã«ãªã£ããã®ã ç¬ ä½ææ²³å ãæ¢ãï¼ï¼åæã«æ¹è¨çï¼ pic.twitter.com/3TLFm14PvZâ â FACT (@factjapan) February 7, 2014 ã§ããã3æã®ä¼è¦ãè¸ã¾ãã¦ä¿®æ£ããããã®ã ä½ææ²³å ãæ¢ãã®ææ°çクソï¾ï¾ï¾ pic.twitter.com/ptNhxecCW4 â 天æææ®è bot (@Siegfried_Idyll) March 7, 2014 ã§ããã ããã§èå³æ·±ãã®ã¯ãä½ææ²³å æ°ã®é¡ãã³ã³ãã¥ã¼ã¿ã«å¦ç¿ããããããã®é¡
ãã«HDã®4åã®è§£å度ããã¤4K解å度ãããããæ¬æ ¼çã«æ®åããããªå¢ãã§ããããã¾ãã«ã解å度ãé«ããããã¨ã§ãã¢ããªã±ã¼ã·ã§ã³ã«ãã£ã¦ã¯æåãå°ãããã¦èªããªããªããªã©ã®å¼å®³ãç¾ãå§ãã¦ãã¾ãããã®ãããªé«è§£å度ããã«çããåé¡ã¨ãã¦ããã£ã©ã¯ã¿ã¼ãã¶ã¤ã³ã®ããããæããããããªã¤ããã®ãã£ã©ã¯ã¿ã¼ãé«è§£å度ãã£ã¹ãã¬ã¤ã«æ¡å¤§è¡¨ç¤ºãããã¨è¼ªéãã¬ã¯ã¬ã¯ã§ã¨ã¦ãè¦ã¦ããããªãã¨ããç¶æ ã«ãªã£ã¦ãã¾ãã¾ãããããªãããææºè¼ã®ã¬ã¯ã¬ã¯ãã輪éãæ»ããã«ä¿®æ£ãããã¢ã«ã´ãªãºã ã使ã£ã¦ãã£ã©ã¯ã¿ã¼ãç°¡åã«å å·¥ã»æ¯è¼ã§ããã®ããDepixelizing Pixel Artãã§ãã Depixelizing Pixel Art http://research.microsoft.com/en-us/um/people/kopf/pixelart/supplementary/multi_compar
330åã®1000次æ¹ç¨å¼ã«ããã¾ã©ããã®ã«ã pic.twitter.com/QnuOhXQfiTâ ããã (@aomoriringo) November 27, 2013 ä¸è¨ã®ãããªãä»»æã®ç»åã®è¼ªéãæ°å¼ã«å¤æããããã°ã©ã ãç´¹ä»ãã¾ãã çºç«¯ Wolfram|Alphaã«ã¯ãPerson Curveãã¨å¼ã°ããé¡ã®æ¤ç´¢çµæãåå¨ãããBarack Obama CurveããHatsune Miku like curveãã¨ãæ¤ç´¢ããã¨ããã®äººç©ã»ãã£ã©ã表ãããã©ã¡ããªãã¯æ¹ç¨å¼ã¨ãã®ããããçµæã表示ããã¾ãã ããã«ã¤ãã¦ã¯ä»¥ä¸ã«ç¤ºãããã«ããããã®è¨äºããããåå¨èªä½ã¯æ©ãããç¥ã£ã¦ãã¾ããã æ°å¼ã解æããã¦ãã¾ã£ãåé³ãã¯ããã®ä»ãã£ã©ã¯ã¿ã¼ãè²ã 試ãã¦ã¿ã¾ãã | ç«ã¨æå http://nlab.itmedia.co.jp/nl/articles/1305/02/
æ®ããã§ã¯ãªãã¦ä½ãã¨ããã¨ããããã¤ã³ãã§ãã æ¹æ³ã¨ãã¦ã¯æ®ãã®ã¯iPhone5ãä½ãã®ã¯PCãªã®ã§ããã¾ãå°é£ãããã¨ã¯å¾ã«åãã¾ãã¦ãå寸大åçã®ä¸é¨åãåã£ããã®ãè¦ã¦ãããã¾ãããã ã¾ããã¡ããæ®éã«æ®ã£ãåçãããã©ããã©ä¸¡åå¼ããã®å·¦ç®ã¢ããã§ããä½ç §åº¦ãªå®¤å ããããã¤ãºãã£ã·ãã§ããã«ãæºå¸¯ã§æ®ã£ãç»è³ªã¨ããæãã§ãã ããã¦ãã¡ããã¢ãã¿ã¼ã ä¸ç®çç¶ã§ããããããã¤ãºãä¸åè¦ãããªããåçã«ãªã£ããã¨æãã¾ãã 種æããããã¾ãã¨â¦ ãåããé ããã§ãããããã¤ã¾ãããããã®åçã®è¼åº¦å¹³åãåã£ãã®ãå ã»ã©ã®çµµã«ãªãããã§ãããã¤ãºã¨ããã®ã¯åºæ¬çã«ã©ã³ãã ã«çºçãããã®ã§ãããããªãããããæ®ã£ã¦å¹³åå¤åºãã°ãã¤ãºãªãã¦ã¶ã£é£ã¶ããï¼ã¨ãããã¨ã§ãã ãã®æ¹æ³ãå¯è½ã«ããã«ã¯ã¾ããã®é£ç¶åçãæ®ãé£åã¢ããªãå¿ è¦ã«ãªãããã§ãããä»å使ã£ãã®ã¯SnappyCamã¨
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}