This domain may be for sale!
æè¿ä»¥ä¸ã®ããã«ã³ã¼ãã³ã°ã人éã®å¦ç¿ã¢ãã«ã®åå¼·ããã¦ããã ç®æ¨è¨å®ã®ä»æ¹ãå¦ã¶ - ãã¶ã»ã³ã¼ããèªãã - $shibayu36->blog; ããªãã¡ã¯ã¿ãªã³ã°ã»ã¦ã§ããã¦ã§ã¢ããåèªãã - $shibayu36->blog; ãã³ã¼ãã³ã°ã®ãã¹ã¦ãã¨ããæ¬ãä»èªãã§ãã ããã§ãèªåã®èããã¾ã¨ããããã«ãããªãæè¿ã³ã¼ãã³ã°ã人éã®å¦ç¿ã¢ãã«ã®åå¼·ããã¦ãããæ¸ãã¦ã¿ããã¨æãã æè¿ãæ ªå¼ä¼ç¤¾ã¯ã¦ãªã¨ããä¼ç¤¾ã§ãã·ãã¢ã¨ã³ã¸ãã¢ã¨ãããã¸ã·ã§ã³ã«ä»ãããã·ãã¢ã¨ã³ã¸ãã¢ã¯ãæ°äººã®ã¨ã³ã¸ãã¢ã®ã¡ã³ã¿ã¼ã¨ãã¦ãç®æ¨è¨å®ã»1on1é¢è«ã»è©ä¾¡ãªã©ãè¡ããã¸ã·ã§ã³ã ãã¾ãã社å ã®ã¨ã³ã¸ãã¢ã®ä¸ã¤ã®ãã¼ã«ã¢ãã«ã¨ãªãããããªæ 度ãæ±ããããã ãã®ãã¸ã·ã§ã³ã«ãªã£ãæã«ãã¾ãåãã«èãããã¨ã¯ããã®ãã¸ã·ã§ã³ã¨ãã¦æ±ãããã¦ãããã¨ã¯ä½ãªã®ãã¨ãããã¨ã ã£ããèããçµæãæ°äººã®ã¨ã³ã¸
ä¸æµè¬å¸«ã®ææ¥ãç¡æã§åè¬ããï½ãUdacityï¼ã¦ã¼ãã·ãã£ï¼ãã®ä½¿ãæ¹ï¼1ï¼ï¼ç»é²ç·¨ï¼æµ·å¤Webãµã¼ãã¹ã®ããªã»ãï¼18ï¼ æµ·å¤Webãµã¼ãã¹ã®ä½¿ãæ¹ããæ¥æ¬èªã§ãåããããã説æããã·ãªã¼ãºãä»æã¯ãªã³ã©ã¤ã³è¬åº§ãã©ãããã©ã¼ã ãUdacityï¼ã¦ã¼ãã·ãã£ï¼ãã解説ãã¾ãã
Tel Aviv University | Wednesday-Thursday, November 5-6, 2014 Wednesday Nov. 5th 8:30-9:10: Gathering 9:10-9:30: Opening: Yehuda Afek, Gadi Singer 9:30-11:30: Yann LeCun (Facebook, NYU) The Unreasonable Effectiveness Of Deep Learning 11:30-12:00: Break 12:00-13:00: Yaniv Taigman (Facebook) Web-Scale Training for Face Identification 13:00-14:00: Lunch 14:00-15:00 Amnon Shashua (HUJI/ICRI-CI) SimNets
ããããã¨å¹´åº¦æ«ã«åãã TODO ãæºã¾ã£ã¦ãã¦ãããå¨ãçã¾ãã¦ããã¨ãããã®ãä»äºã®æéã8å²ã«åæ¸ãã¦ãããããã²ã¨ã¾ã年度å ã¯æ°è¦ã®ä»äºã¯ååçã«å¼ãåããªãããã«ãã¦ããã®ã ããç¶ç¶ã®ä»äºã ãã§ãæã£ããããããã®ã§ããã ååä¸ã¯èªç¶è¨èªå¦çç¹è«ï¼å¤§å¦é¢ã®ææ¥ï¼ãã¿ããªã®ã½ã¼ã¹ã³ã¼ããè¦ã¦ããã¨ãç¹å¾´ãåºã¦ããããããããããããµã³ãã«ã«ä½¿ããï¼ãã¨æã£ããããã大è¦æ¨¡åããã¨ãã®å¹çãªããã«ã¤ãã¦ãã¨ãã©ãè£è¶³ãå ¥ãããããï¼å¯èªæ§ãä¿å®æ§ã®ããã«ããã¦å¹çãç ç²ã«ãã¦ããå ´åãããã®ã§ãä¸æ¦ã«å¹çãããããå¿ è¦ã¯ãªãã®ã ãï¼ãçµå±è¨ç®éãè¦ç©ããã¨ããæèããªãã¨ããã£ããä½åº¦ãå®è¡ãããéè¤ããå¦çãæ¸ããããçè¡åãªã®ã«å¯è¡åãä½ã£ã¦æ¼ç®ãããããã®ã§ãæ¸ãã¦å®è¡ããç´ãã¦ãéããªã£ãï¼ãã¨ããçµé¨ãä½åº¦ãããã®ãè¿éãªã®ããªã åå¾ã¯ SLPï¼èªç¶è¨èªå¦çã®æç§æ¸ï¼
人æ°ã®è¨äº 1ã½ãããã³ã¯ã®éä¿¡é害ãã¨ãªã¯ã½ã³è£½äº¤ææ©ãåå ã¨å ¬è¡¨--æµ·å¤11ã«å½ã§ãåæ§ã®é害 2018å¹´12æ07æ¥ 2PayPayå©ç¨ã§20ï¼ éå ããã100ååããã¡ãããã£ã³ãã¼ã³ãçºè¡¨--40åã«1åã¯å ¨é¡éå ã« 2018å¹´11æ22æ¥ 3ãã¹ããªã¼ããã¥ã¼ããæããã¯ã¬ã¤ã¸ã¼ãããå æ¯38é£çº 2018å¹´08æ05æ¥ 4漫ç»å®¶ã»èæ¨é£å彦æ°ãèãããç´ã¨ãã¸ã¿ã«ã®éãã--ä¸åä¸çã¤ã³ã¿ãã¥ã¼ 2018å¹´11æ24æ¥ 5ã½ãããã³ã¯ãéä¿¡é害ãã復æ§--åå ã¯ã交æè¨åã®ä¸å ·åã 2018å¹´12æ06æ¥ 6ãPixelãã®å¤éæ®å½±ã¢ã¼ããNight Sightããé©ç°ç--å®éã®åçã§ãã§ã㯠2018å¹´11æ14æ¥ 7ã½ãããã³ã¯ã§éä¿¡é害--ã¯ã¤ã¢ãã¤ã«ãåMVNOã«ãå½±é¿ 2018å¹´12æ06æ¥ 8SIEããã°ã©ã³ãã¼ãªã¹ã¢SPORTãã§ãã§ã©ã¼ãªF50ãªã©æ°è¦è»ä¸¡7
Unlocking knowledge, Empowering Minds. Free lecture notes, exams, and videos from MIT. No registration required. Learn More about the OCW mission Free and open access to knowledge needs your support. When you donate to MIT OpenCourseWare, you open up possibilities for learners everywhere. Make your gift before our June 30 fundraising deadline. Chalk Radio: a podcast about inspired teaching at MIT
(see also: ä»é±ã®Courseraï¼ ãã£ããé¢æ±ã«æ¥ã¦ã¢ã¬ã ãã©åå¼·ä¼ã«æé使ããã coursera ã«æé使ãããâ smlyãã (@smly) 4æ 20, 2012 ãããªã«æ¥½ãããã®ãããã¨ããã®ãªãã¡ãã£ã¨è¦ã¦ã¿ããã¨æã£ã¦ã§ãã Education for Everyone - Coursera 誰ã§ããªã³ã©ã¤ã³ã§å¤§å¦æè²ãåããããã ãã®æã®ãã®ã§ã¯OpenCourseWareãæåã ããã©ãã©ããè¦ãã¦ããã¾ãé¢ç½ããªã¼ã¨æããã¨ããªãã£ããiTunes Uãåæ§ãTechCrunchæ°ããPDFãé»åæ¸ç±ã ã¨è¨ãå¼µããããªæ 度ãã¨ã¯è¨ãå¾ã¦å¦ã§ããã Courseraã¯ã©ãã ãããããããã¼ã¸ãè¦ãéãã§ã¯ Stanford University Princeton University University of Michigan University
ç±³ã¹ã¿ã³ãã©ã¼ã大å¦ã¯ãä»ç§ããå大å¦ã§è¡ããã¦ããã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ã®è¬ç¾©ã®ãã¡ã3ã¤ã®ã³ã¼ã¹ããªã³ã©ã¤ã³ã§ç¡æå ¬éãããã¨ãçºè¡¨ãã¾ããã å ¬éãããã®ã¯ããMachine Learningãï¼æ©æ¢°å¦ç¿ï¼ããIntroduction to Databasesãï¼ãã¼ã¿ãã¼ã¹å ¥éï¼ããIntroduction to Artificial Intelligenceãï¼äººå·¥ç¥è½å ¥éï¼ã®3ã³ã¼ã¹ãã©ã®ã³ã¼ã¹ãä»å¹´ã®10æã«éè¬ã12æã«çµäºãã3ã«æéã®äºå®ãã³ã¼ã¹ã«ãã£ã¦ã¯å®éã®è¬ç¾©ã¨ã»ã¼åæ§ã®å®¿é¡ãç¨æãããæåºããã¨èªåæ¡ç¹ãã¦ãããããã§ãã æ©æ¢°å¦ç¿ã®ã³ã¼ã¹ãæ å½ããAndrew Ngåææã¯çºè¡¨ã®ä¸ã§æ¬¡ã®ããã«ã³ã¡ã³ããã¦ãã¾ãã âBoth in the United States and elsewhere, many people simply do not have a
General: Recommendation Systems: MovieLens. There are currently two datasets available from http://www.grouplens.org. The first one consists of 100,000 ratings for 1682 movies by 943 users, subdivided into five disjoint subsets. The second one consists of approximately 1 million ratings for 3900 movies by 6040 users. These are the âstandardâ datasets that many recommendation system papers use in t
Multivariate, Sequential, Time-Series, Domain-Theory
ãé空æ庫ããããã¹ããã¤ãã³ã°ï¼ ååã®ããã¾ããèããªãHadoopã¨ããã¹ããã¤ãã³ã°å ¥éãã§ã¯ãHadoopã¨ããã¹ããã¤ãã³ã°ã®æ¦è¦ãæ§æãMapReduceã®ä»çµã¿ãHadoopã®æ´»ç¨å ´é¢ãªã©ã解説ããHadoopã®å®è¡ç°å¢ãæ§ç¯ãã¾ãããä»åãããHadoopã使ããããã¹ããã¤ãã³ã°ã®MapReduceããã°ã©ã ãä½æãã¦ããã¾ãã ãé空æ庫ãã¨ãããµã¤ãããåãã§ãããããé空æ庫ã¯ãèä½æ¨©ãåããæ¥æ¬ã®æå¦ä½åãæ²è¼ãã¦ããWebãµã¤ãã§ãé空æ庫ã®å ¨ãã¼ã¿ãDVDããBitTorrentã«ããé ä¿¡ã§å ¥æã§ãã¾ããä»åã¯ããã®ãã¼ã¿ã使ã£ã¦ããã¹ããã¤ãã³ã°ãè¡ãã¾ãããã ååãããã¹ãåé¡ã§ãèè ã®æ§å¥ãå¹´é½¢ãå°åãè·æ¥ãªã©ã®å±æ§ãæ¨å®ã§ããã¨æ¸ãã¾ããããé空æ庫ã¯ãä»ã®ãã¼ã¿ã«ã¯ãªããèè å±æ§ãããã¾ããé空æ庫ã®ä½åã¯ãèä½æ¨©ãåãã¦ãä½è ããªããªã£ã¦ããå ´
ä¾ã«ãã£ã¦ï¼ICML2011ããActive Learning from Crowdsã®ã¡ã¢æ¸ãã§ãï¼ ã¯ã©ã¦ãã¨éæã£ã¦ã¯ãã¾ããï¼çµå±ã®ã¨ããè¤æ°ã¢ããã¼ã¿ã¼ãããã¨ãã«ã©ã®ããã«è½åå¦ç¿ãè¡ãã¨ãããï¼ã¨ããææ³ææ¡ã®è«æã«ãªã£ã¦ãã¾ãï¼ æ¦è¦ ã¢ããã¼ã¿ã¼ãè¤æ°ããå ´åã®è½åå¦ç¿ææ³ã®ææ¡ ã©ãã«ä»ãããããã¼ã¿ã«é¢ãã¦ï¼ä¸çªä¿¡é ¼ã§ããã¢ããã¼ã¿ã¼ã®ã©ãã«ä»ãæ å ±ãä¿¡é ¼ãã ãã åã«å¤æ°æ±ºãåããããé«ã精度ãéæ è½åå¦ç¿ (Active Learning) ä»ã¾ã§ã©ãã«ä»ããããã¼ã¿ããå¦ç¿å¨ãçæ ä¸æãåé¡åºæ¥ãªããã¼ã¿ï¼ä»å¾ã®å¦ç¿ã«ä¸çªæå¹ãªãã¼ã¿ï¼ãé¸ã³ï¼ã¢ããã¼ã¿ã¼ã«ããã©ãã«ä»ã ä¸è¨ã®æä½ãç¹°ãè¿ã è¤æ°ã¢ããã¼ã¿ã¼ å¤ãã®æ師ããå¦ç¿ã§ã¯ï¼ä¸äººã®ã¢ããã¼ã¿ã¼ãã©ãã«ä»ããããã¨ãæã«ä»®å® ãã®ä»®å®ã¯æ¬å½ã«æ£ãããï¼ è¿å¹´ã¯ï¼å¤ãã®ãã®ãã¼ã¿ã¼ãåæã«ã©ãã«ä»ãã
ããã°ãã¼ã¿æ代ã®æä¸ä¸»ãHadoopãã¨ã¯ ãApache Hadoopãã¯ä»ãæã注ç®ãéãã¦ããæè¡ã®1ã¤ã§ããHadoopã¨ã¯ã大éã®ãã¼ã¿ãæ軽ã«è¤æ°ã®ãã·ã³ã«åæ£ãã¦å¦çã§ãããªã¼ãã³ã½ã¼ã¹ã®ãã©ãããã©ã¼ã ã§ãã Hadoopãæ´»ç¨ãã¦ããä¼æ¥ã¯å¹´ã å¢ãç¶ãã¦ãã¦ãä¸å¯æ¬ ãªæè¡ã«ãªãã¤ã¤ããã¨ãããã§ãããã æ¬é£è¼ã§ã¯ãHadoopã¨ã¯ä½ããHadoopãã©ãæ´»ç¨ã§ããã®ãã¨ãããã¨ãããããã¹ããã¤ãã³ã°ãã«ç¦ç¹ãå½ã¦ã¦è§£èª¬ãã¦ããããã¨æãã¾ãã éãå¦çãè¤æ°ã®ãã·ã³ã«åæ£ããã è¤æ°ã®ãã·ã³ã«å¦çãåæ£ãããã«ã¯ãããã»ã¹å士ã®éä¿¡ãç£è¦ãé害æã®å¯¾å¿ãªã©ãèããªããã°ãªãããããã°ã©ãã«ã¨ã£ã¦ãã¼ãã«ãé«ããã®ã§ããããããHadoopã¯ãããã£ãé¢åãããå¦çãä¸æã«å¼ãåãã¦ãããããã°ã©ãã¯ãããããå¦çã ãã«éä¸ã§ãã¾ãã ä¾ãã°ãHadoopã使ãã¨ã1
ãã¡ã㯠SDM ã®çºè¡¨ï¼ãã«ãã¯ã©ã¹åãã® PA ã®ç²¾åº¦æ¹åï¼å»å¹´ã®ç 究ä¼ã«åºã¦ã話ã¨åãããªï¼ãããã PDF ãå ¬éï¼ ããã£ã¨çºããã ããªã®ã§ï¼å¾ã§ã¡ããã¨èªããï¼
Invited Application Track Jump to Main Track 901: Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine Thore Graepel (Microsoft Research); Joaquin Quiñonero Candela (Microsoft Research); Thomas Borchert (Microsoft Research); Ralf Herbrich (Microsoft Research) 902: Detecting Large-Scale System Problems by Mining Console Logs Wei Xu (UC
ä»æ¥ã®æ©æ¢°å¦ç¿ã®åå¼·ä¼ã§ã¯ Percy Liang, Dan Klein. Online EM for Unsupervised Models. NAACL-2009. ã @tettsyun ãããç´¹ä»ãã¦ããããæ¥æ¬èªã«ãã解説ã¯@hillbigããã®ãªã³ã©ã¤ã³EMã¢ã«ã´ãªãºã ã«è©³ããã(ohmm(ãªã³ã©ã¤ã³EMã«ããHMMå¦ç¿)ããªãªã¼ã¹ãã¾ããã§ã½ã¼ã¹ã³ã¼ããå ¬éããã¦ãã) ã¡ãªã¿ã«@tkngãããChaIMEã®é«éåã¨ã¢ãã«ãã¡ã¤ã«ã®ãµã¤ãºã縮å°ããããã«ããã®ohmmãç¨ãã¦ããã大è¦æ¨¡ãã¼ã¿ã«å¯¾ãã¦ã¹ã±ã¼ã«ãããã¨ãããã¨ã示ãã¦ãããã¨ããã®ãããã¾ã§ã®çµç·¯ã ãããä»åãã¡ãã¨è«æãèªãã§ã¿ãã¨ãã©ããå½¼ãã¯æ°ãããã¨ãææ¡ããã¨ããããã¯ãèªç¶è¨èªå¦çã®ããã¤ãã®ã¿ã¹ã¯ã§ãã£ããå®é¨ãã¾ãããã¨ãã話ã®ããã§ãããããã¦ãåè©ã¿ã°ä»ãã¨åèªåå²ãææ¸ã¯ã©ã¹ã¿ãªã³ã°ã¨æ©
JAVAã§ãã¼ã¿ãã¤ã³ã°ï¼ãæ å ±å·¥å¦ã®é£ãããããªã¢ã«ã´ãªãºã ãJAVAã§å®è£ ãã¦ãã²ããããã®çµæãå ¬éãããããã°ã«ãªãäºå®ãã¨ã³ã¸ãã¢/å¦ã³ã»æè² LSH
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}