Large Concept Models: Language Modeling in a Sentence Representation Space æ¦è¦LLMs have revolutionized the field of artificial intelligence and have emerged as the de-facto tool for many tasks. The current established technology of LLMs is to process input and generate output at the token level. This is in sharp contrast to humans who operate at multiple levels of abstraction, well beyond single wo
2024/11/01è¿½è¨ GraphRAGã®å®è£ ã«ãnano-graphragã追å ãããããã§ãã https://x.com/kagamih/status/1852282744694587509 MSã®GraphRAGãããã³ã³ãã¯ãã«ä½¿ããã¨æãã®ã§ãå人çã«ã¯ãã¡ãããªã¹ã¹ã¡ãã¾ãï¼ã¾ã 試ãã¦ãã¾ãããï¼ nano-graphragãå ã«ããLightRAGã«ã¤ãã¦ã¯ä»¥ä¸ã«ã¾ã¨ãã¦ã¾ãã https://zenn.dev/kun432/scraps/1f28e5d20dfdf5 ãã¨ä¸ã«æ¸ãã¦ãä¸å ·åã確ãããç´ã£ã¦ãã¨æããã©ãå®éã«è©¦ãã¦ããªãã®ã¨ãnano-graphragã®ã»ããããããªã¨æãã®ã§ããã¯ãæ¬è¨äºã¯obsoleteã¨ãããã¨ã§ã 2024/09/03è¿½è¨ ã¡ãã£ã¨Xçµç±ã§è¦ã«æ¥ã¦ããã ããæ¹ãå¢ãã¦ãããããªã®ã§ãããããæ³¨æã kotaemonã§æ®éã®RAG
ã¯ããã¾ãã¦ï¼2024å¹´5æããInsight Edgeã«ã¸ã§ã¤ã³ããData Scientistã®å¸å·ã§ãã ã¾ã å ¥ç¤¾ãã¦éããªãã§ããããªã«ã¿ããã£ããã¼ã¿ãæ´»ç¨ããæ¡ä»¶ããéèå¸å ´ã®ãªãã·ã§ã³çãæ´»ç¨ããåæãªã©ã«æºãã£ã¦ããã¾ãã ä»åã¯ãå æ¥äººå·¥ç¥è½å¦ä¼ï¼JSAI2024ï¼ã«è¡ã£ã¦ãã¾ããã®ã§ããã®ã¬ãã¼ããããã¦é ãã¾ãã ã¤ãã³ãã®æ¦è¦ çºè¡¨ã®æ¦è¦ [2J1-KS-19] éèåéã«ãããå¤§è¦æ¨¡è¨èªã¢ãã«ã®æ´»ç¨ [2A2-PS-2] é²åããå¤§è¦æ¨¡è¨èªã¢ãã« [2O4-OS-25a] ä¸åç£ã¨AI [2O4-OS-25a-01] ä½å® ä¾¡æ ¼äºæ¸¬ã¢ãã«ã®çµæçãªç²¾åº¦ã®å¤ååæ [2O4-OS-25a-02] å°ç空éãããã¯ã¼ã¯ãã¼ã¿ã¨æ©æ¢°å¦ç¿ãç¨ãã説æå¯è½æ§ã®é«ãè³æäºæ¸¬ [2O4-OS-25a-03] æ©æ¢°å¦ç¿ãç¨ããç©ä»¶è¨åã¹ã³ã¢ã®æ¨å®ï¼ä¸åç£ãã¼ã¿ã使ç¨ããã±ã¼ã¹ã¹ã¿ã
How we applied qualitative learning, human labeling and machine learning to iteratively develop Airbnbâs Community Support Taxonomy. By: Mia Zhao, Peggy Shao, Maggie Hanson, Peng Wang, Bo Zeng BackgroundTaxonomies are knowledge organization systems used to classify and organize information. Taxonomies use words to describe things â as opposed to numbers or symbols â and hierarchies to group things
A unified, comprehensive and efficient recommendation library General and extensible data structure We design general and extensible data structures to unify the formatting and usage of various recommendation datasets. Comprehensive benchmark models and datasets We implement more than 100 commonly used recommendation algorithms, and provide the formatted copies of 43 recommendation datasets. Exten
Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs). While MLPs have fixed activation functions on nodes ("neurons"), KANs have learnable activation functions on edges ("weights"). KANs have no linear weights at all -- every weight parameter is replaced by a univariate function parametriz
å帰ã¢ãã«ã®è©ä¾¡ MSE:å¹³åäºä¹èª¤å·® from sklearn.metrics import mean_squared_error scores = mean_squared_error(val_y, pred) RMSE import numpy as np from sklearn.metrics import mean_squared_error scores = np.sqrt(mean_squared_error(val_y, pred)) R^2:決å®ä¿æ° from sklearn.metrics import r2_score scores = r2_score(val_y, pred) åè sklearnã®å帰ã¢ãã« LinearRegression from sklearn.linear_model import LinearRegression lr = Linea
æ´æ°ï¼2025å¹´1æ28æ¥ï¼ è«æãEvolutionary Optimization of Model Merging Recipesããè«æèªãNature Machine Intelligenceãã«æ¡æããæ¬æ¥æ²è¼ããã¾ãããææ°ãã¼ã¸ã§ã³ã§ã¯æ¬ã¢ããã¼ããããã«å®è¨¼ããæ°ããªå®é¨çµæãå«ãã§ãã¾ãããã²ä»¥ä¸ããã覧ãã ããã https://www.nature.com/articles/s42256-024-00975-8 Sakana AIã¯2024å¹´3æã«ãé²åçã¢ãã«ãã¼ã¸ããå ¬éãã大ããªåé¿ãå¼ã³ã¾ãããå ¬éæã«ã¯å½å å¤ã®å¤ãã®ã¡ãã£ã¢ã«åãä¸ããããã¥ã¼ã¹ã«ãªãã¾ãããé²åçã¢ãã«ãã¼ã¸ã¯mergekitãOptuna Hubã¨ãã£ãèåãªOSSãã¬ã¼ã ã¯ã¼ã¯ã«ãå®è£ ããã夿§ãªã¦ã¼ã¶ã¼ããããæ´»ç¨ããæ°ã ã®åæ§çãªã¢ãã«ã使ã»å ¬éããã¦ãã¾ãããã¾ãã社å å¤ã®è¤
æ¬è¨äºã¯ãå½ç¤¾ãªã¦ã³ãã¡ãã£ã¢ãDoorsãã«ç§»è»¢ãã¾ããã ç´5ç§å¾ã«èªåçã«ãªãã¤ã¬ã¯ããã¾ãã çºå±ãç¶ãããèªç¶è¨èªå¦çãæè¡ããã®ä¸ã§ãå¹ åºã使ç¨ãããæ·±å±¤å¦ç¿ã¢ãã«Transformerã¯ãèªç¶è¨èªå¦ç以å¤ã®é³æ¥½çæãç©ä½æ¤åºãªã©ã®é åã§ãé©ç¨ã§ãã¾ããæ¬ããã°ã§ã¯ã Transformerãæç³»åãã¼ã¿ã«é©ç¨ããæ¹æ³ããç´¹ä»ãã¾ãã ããã«ã¡ã¯ãAIã½ãªã¥ã¼ã·ã§ã³ãµã¼ãã¹é¨ã®äºåºã¨ç³ãã¾ãã ãã®è¨äºã§ã¯ãç¹ã«èªç¶è¨èªå¦çåéã§å¹ åºã使ç¨ãããæ·±å±¤å¦ç¿ã¢ãã«Transformerãæç³»åãã¼ã¿ã¸é©ç¨ããæ¹æ³ã«é¢ãã¦ãç´¹ä»ãã¾ãã 以åã®è¨äºã§ã¯ãTransformerã®æ§é ãç¹å¾´ãªã©ã«ã¤ãã¦ãèªç¶è¨èªå¦çåéã®æ©æ¢°ç¿»è¨³ãä¾ã¨ãã¦ãç´¹ä»ãã¦ããã¾ããã¯ããã«ããã¡ãã®è¨äºããä¸èªãã¦ããã ããã¨ã§ãããæ¬è¨äºã§ãç´¹ä»ããå 容ã«å¯¾ããçè§£ãæ·±ã¾ããã¨æãã¾ãã Transform
ããã«ã¡ã¯ï¼ãç»åã·ã¹ãã ã°ã«ã¼ãã§æ©æ¢°å¦ç¿ã¨ã³ã¸ãã¢ããã£ã¦ããå°å³¶ã§ãã ãã®è¨äºã§ã¯ãä»ããããªãZero-shot Learningãã¨ãVision & Languageãã«é¢ããææ°æ å ±ããCLIPã¨ããç ç©¶ãèµ·ç¹ã¨ãã¦ç¶²ç¾ çã«ãµã¼ãã¤ããã¦ããã¾ãããã®ããã«è«æ1000æ¬ã«ç®ãéãã70æ¬ç¨åº¦ãè¨äºã«ãã¾ããã Zero-shotãVision & Languageã¯ãStable Diffusionã«ä»£è¡¨ãããç»åçæAIã¨ã坿¥ã«é¢é£ãã¦ããæè¡ã§ãããã®è¨äºãéãã¦ãVision & Languageã®å¥¥æ·±ãä¸çã使ã§ããã§ãããã æ³¨æäºé ãã®è¨äºã¯é常ã«é·ããããå ¨é¨èªãã®ã«1æé以ä¸ãããå¯è½æ§ãããã®ã§ã伿©ãåããªãããã¾ãã¯å¿ è¦ãªé¨åã ãèªãã§ãã ãããåã»ã¯ã·ã§ã³ãåå¥ã«èªãã§ãåé¡ããã¾ããã ã¾ããæç« ä¸ã®ç»åã¯ãç¹å¥ãªè¨è¼ããªãéããå¼ç¨å ã®è«
ãGoogle Colabãã§ãMoore-AnimateAnyoneãã試ããã®ã§ãã¾ã¨ãã¾ããã 1. Moore-AnimateAnyoneãMoore-AnimateAnyoneãã¯ããAnimateAnyoneãã®åç¾å®è£ ã§ããå ã®è«æã§å®è¨¼ãããçµæãä¸è´ãããããã«ããã¾ãã¾ãªã¢ããã¼ããããªãã¯ãæ¡ç¨ãã¦ãã¾ããããããã¯è«æãå¥ã®å®è£ ã¨ã¯å¤å°ç°ãªãå ´åãããã¾ãã ããã¯éå¸¸ã«æ«å®çãªãã¼ã¸ã§ã³ã§ãAnimateAnyone ã§ç¤ºãããããã©ã¼ãã³ã¹ (ãã¹ãã§ã¯ç´ 80%) ã«è¿ä¼¼ãããã¨ãç®çã¨ãã¦ãã¾ãã 2. ã¤ã³ã¹ãã¼ã«ã¤ã³ã¹ãã¼ã«æé ã¯ã次ã®ã¨ããã§ãã (1) ããã±ã¼ã¸ã®ã¤ã³ã¹ãã¼ã«ã # ããã±ã¼ã¸ã®ã¤ã³ã¹ãã¼ã« !git clone https://github.com/MooreThreads/Moore-AnimateAnyone %cd Moor
20XX å¹´ãæã 人é¡ã¯é²åèãã AI ã«é©ããããªãæ¥ã ãç¶ãã¦ãã¾ããã½ã¼ã·ã£ã«ã¡ãã£ã¢ã«é©ããããµãã¤ã³ãã¬ãã·ã§ã³ãç«¶ãæ§ã¯ã¾ãã«å¤§æµ·è³æä»£ããããã®æµ·è³çã«ä¿ºã¯ãªããã¨ã°ããé£ã³ã¬ãã¦è³ç®ãå¼ãè¶ æ°æ ( ã¹ã¼ãã¼ã«ã¼ãã¼ ) ãé è§ãç¾ãã¦ãã¾ãã ãããé©ãå±ãã¨ãã°ãã°ç§°ãããã«ã¼ãã¼ãã¡ã¯ X ( æ§ Twitter ) ã®ã¿ã¤ã ã©ã¤ã³ã«ç¾ãã¦ã¯æ å ±ã®æ£ç¢ºæ§ãéãããã¨ã³ã¸ãã¢ãç ç©¶è ãæ¸æããã¾ãããã¼ã ãã³ãã¥ããã£å ã® Slack ã¯ããããå§åªããé¢ãããªã¢ã·ã¹ã¨ãããããããã¾ããããããªãªã¢ã·ã¹ã«ããé©ãå±ãå¬åãã¿ã¤ã ã©ã¤ã³ãèããã®ãä»åã®ç®çã§ããæ¬¡ã«å®éã®ä¾ã示ãã¾ãã ãªããªã模å£ã§ãã¦ããã®ã§ã¯ãªãã§ããããããªã¢ã·ã¹ã¯ä»ãã¸ã£ã³ã°ã«ã«å¤ããã¾ãããç§ãã¡ãçãã¦ããä¸çã§ã¯æ£ç¢ºã§åå³ãããæ å ±ã ãã«ã¢ã¯ã»ã¹ãããã¨ããé¡ãã¯å®ç¾ãããªãã®ã§ãç¾
æ¬ãã¼ã¸ã§ã¯ãPython ã®æ©æ¢°å¦ç¿ã©ã¤ãã©ãªã® scikit-learn ãç¨ãã¦ã¯ã©ã¹ã¿åæãè¡ãæé ãç´¹ä»ãã¾ãã ã¯ã©ã¹ã¿åæã¨ã¯ ã¯ã©ã¹ã¿åæ (ã¯ã©ã¹ã¿ãªã³ã°, Clustering) ã¨ã¯ãã©ãã«ä»ãããªããã¦ããªããã¼ã¿ã«å¯¾ãã¦ãè¿ãã屿§ãæã¤ãã¼ã¿ãã°ã«ã¼ãåããææ³ã§ããä¾ããããã¨ã以ä¸ã®ãããªæ´»ç¨æ¹æ³ãããããã¼ã±ãã£ã³ã°æ½çãååã®ä¼ç»éçºãªã©ã«æ´»ç¨ãããã¨ã¾ãã 製åãã¨ã®ç¹å¾´ (èªåè»ã§ããã°ãä¾¡æ ¼ãå®å¡ãçè²»ãææ°éãç´è¿ã®è²©å£²å°æ°) ãç¨ãã¦é¡ä¼¼ã®è£½åãã°ã«ã¼ãå åºèã®ç¹å¾´ (ã¹ã¼ãã¼ã§ããã°ã売ä¸ãé¢ç©ã徿¥å¡æ°ãæ¥å®¢æ°ãé§è»å ´ã®æ°) ããé¡ä¼¼ã®åºèãã°ã«ã¼ãå 顧客ã®ç¹å¾´ (éè¡ã§ããã°ãæ§å¥ãå¹´é½¢ãè²¯èæ®é«ãæ¯æã®æ¯åºãä½å® ãã¼ã³ã®å©ç¨æç¡ãªã©) ãç¨ãã¦ä¼¼ããããªå©ç¨å¾åã®é¡§å®¢ãã°ã«ã¼ãå ã¯ã©ã¹ã¿åæã«ã¯å¤§å¥ãã¦ãK-Means ã«ä»£è¡¨ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}