åæ: http://blog.cloudera.com/blog/2017/05/hdfs-maintenance-state/ ã¯ããã«:OSã®æ´æ°ãã»ãã¥ãªãã£ãããã®é©ç¨ãä¿®æ£ããã°ã©ã ãªã©ã®ã·ã¹ãã ã®ã¡ã³ããã³ã¹ä½æ¥ã¯ãã©ã®ãã¼ã¿ã»ã³ã¿ã¼ã§ãæ¥å¸¸çãªä½æ¥ã§ãã ãã®ãããªã¡ã³ããã³ã¹ä½æ¥ãè¡ã£ã¦ããæä¸ã®DataNodeã¯ãæ°åããæ°æéã®éãªãã©ã¤ã³ã«ãªãå¯è½æ§ãããã¾ãã è¨è¨ä¸ãApache Hadoopã®HDFSã¯DataNodeã®ãã¦ã³ã«å¯¾å¿ã§ãã¾ãããåæã«è¤æ°ã®DataNodeã§èª¿æ´ããã¦ããªãã¡ã³ããã³ã¹æä½ãããã°ãä¸æçã«ãã¼ã¿å¯ç¨æ§ã®åé¡ãå¼ãèµ·ããå¯è½æ§ãããã¾ãã HDFSã¯ç¾å¨ãè¨ç»ãããä¿å®ä½æ¥ãå®è¡ããããã«æ¬¡ã®æ©è½ããµãã¼ããã¦ãã¾ã: ãã¼ãªã³ã°ã¢ããã°ã¬ã¼ããã³ããã·ã§ã³ã¡ã³ããã³ã¹ã¹ãã¼ã (CDH 5.11以éï¼ãã¼ãªã³ã°ã¢ããã°ã¬ã¼ãã®
åæ: https://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/ 訳注ï¼2015/9/23ã«å ¬éãããããã°ã®ç¿»è¨³ã§ããããã°å ¬éå½æã¨ã¯ç°ãªãç¹ãããã¾ãã®ã§ãææ°æ å ±ã¯HDFS-7285ãHDFS-8031ãªã©ãã確èªãã ããã HDFSã®æ°æ©è½ã§ããã¤ã¬ã¤ã¸ã£ã¼ã³ã¼ãã£ã³ã°(Erasure Coding)ã¯ãã¬ããªã±ã¼ã·ã§ã³ï¼è¤è£½ï¼ã¨æ¯è¼ãã¦ãåçã®æ°¸ç¶æ§ã®ä¿è¨¼ãç¶æããªããã¹ãã¬ã¼ã¸ã®ãªã¼ãã¼ããããç´50ï¼ åæ¸ãããã¨ãã§ãã¾ãã ãã®ããã°ã§ã¯ãErasure Codingãã©ã®ããã«åä½ãããã説æãã¾ãã ããã©ã«ãã§HDFSã¯åãããã¯ã3åè¤è£½ãã¾ãã ã¬ããªã±ã¼ã·ã§ã³ã¯ãã»ã¨ãã©ã®é害ã·ããªãªãåé¿ããããã®ãã·ã³ãã«ã§å ç¢ãªåé·æ§ã®å½¢å¼ãæ
I've done some estimates on how much space our data structures take on the name-node per block, file and directory. Brief overview of the data structures: Directory tree (FSDirectory) is built of inodes. Each INode points either to an array of blocks if it corresponds to a file or to a TreeMap<String, INode> of children INodes if it is a directory. [Note: this estimates were made before Dhruba rep
AWS Big Data Blog Using CombineInputFormat to Combat Hadoopâs Small Files Problem James Norvell is a Big Data Cloud Support Engineer for AWS Many Amazon EMR customers have architectures that track events and streams and store data in S3. This frequently leads to many small files. Itâs now well known that Hadoop doesnât deal well with small files. This issue can be amplified when migrating from Had
ã¯ããã« ä»åã¯ãImpalaã«ãããI/Oã®é«éåææ³ã«ã¤ãã¦èª¬æãã¾ãã åå説æããããã«ãImpalaã®å®è¡ã¨ã³ã¸ã³ã¯å¯è½ãªéãã¡ã¢ãªä¸ã§å¦çããããã¨ã§ã¢ãããã¯ã¯ã¨ãªã®ã¬ã¤ãã³ã·ãä¸ããã¹ã«ã¼ããããåä¸ããããã¨ããè¨è¨æ¹éã§éçºããã¦ãã¾ãã ãããããã¼ã¿ã¯ã¹ãã¬ã¼ã¸ï¼äºæ¬¡è¨æ¶è£ ç½®ï¼ã«æ ¼ç´ããã¦ãããããå½ç¶ãã¹ãã¬ã¼ã¸ã¸ã®I/Oãåé¿ãããã¨ã¯ã§ãã¾ãããã¾ããImpalaã¯å®è¡æã«ååãªã¡ã¢ãªã確ä¿ããã¹ãããã¼ã¿ãã¡ã¢ãªä¸ã«ä¿æï¼ãã£ãã·ã¥ï¼ããªããããã¯ã¨ãªãå®è¡ãããã³ã«ãã¼ã¿ãã¹ãã¬ã¼ã¸ããèªã¿åºããã¨ãåæã¨ãã¦è¨è¨ããã¦ãã¾ã[1]â ã ä»åã¯ããã®ãããªã¦ã¼ã¹ã±ã¼ã¹ãèæ ®ãã¤ã¤ãé«éã»é«å¹çãªã¢ãããã¯ã¯ã¨ãªãå®è¡ããããã®I/Oå¦çæ¹å¼ã¨ãã¼ã¿ã¬ã¤ã¢ã¦ãã«ã¤ãã¦è§£èª¬ãã¾ãã Short-Circuit Local Readsã«ããI/Oã®é«å¹çå Sh
Asakusaãæ°è¦ã«é«éå®è¡ã¨ã³ã¸ã³ï¼M3BPï¼ããµãã¼ããããM3BPã¯ã¡ãã¼ã³ã¢ç¹ååã®C++ã§å®è£ ãããDAGã®å®è¡ã¨ã³ã¸ã³ã«ãªãããã¼ãã©ã¹ã¨Fixstarsã®å ±åéçºã®OSSã§ãåãã¼ãã»ã¡ãã¼ã³ã¢ã§ã®ãå¦çã®é«éåãã«æ¯ã£ã¦ãããããããIn-memoryã®å®è¡ã¨ã³ã¸ã³ã§ããã¼ãã®CPUã³ã¢ã使ãåããã¨ãç®æ¨ãã¦ãããä½è¨ãªæ©è½ã¯ãã¹ã¦åã£ãããã¼ã¿ããµã¼ãã»ã¡ã¢ãªã¼ã«ä¹ãã¯ã©ã¹ã®ãããå¦çã§ããã°ãã»ã¼ç©çéçã¾ã§ããã©ã¼ãã³ã¹ããããåºãã http://www.asakusafw.com/release/20160412.html å®éã®ãã³ããã¼ã¯ã¯ä»¥ä¸ã®white paperã«ããã http://www.asakusafw.com/wp/wp-content/uploads/2016/04/M3forBP_WP_JA_2016Apr12.pdf ãã³ããã¼ã¯å¯¾è±¡
MapR 㯠HDFS ã®ä»£ããã« MapR-FS ã使ç¨ãã¦ãã Hadoop ãã£ã¹ããªãã¥ã¼ã·ã§ã³ã§ããæ§è½ã®åä¸ãä¿¡é ¼æ§ã®åä¸ãã©ã³ãã ãªã¼ãã©ã¤ãå¯è½ãªNFSãNoSQL ãã¼ã¿ãã¼ã¹ã¨ã®çµ±åãã¡ãã»ã¼ã¸ã³ã°ãã¥ã¼ã¨ã®çµ±åãã»ã»ã»ã¨ MapR-FS ã®ã¡ãªããã¯æããã°ããããªãã®ã§ãããHDFS API ã¯ãã®ã¾ã¾å©ç¨ã§ããããããã¹ã¦ã® Hadoop ã¢ããªã±ã¼ã·ã§ã³ãã©ã¤ãã©ãªã¯éããæèãããã¨ãªãåä½ãã¾ãã ãã¦ãHadoop ã¯ã©ã¹ã¿ãéç¨ããéã«ããã¼ã¿æ´æ°ãè¡ãæ¥åã¢ããªã±ã¼ã·ã§ã³ã¨ãåç §ãã¡ã¤ã³ã®åæã¢ããªã±ã¼ã·ã§ã³éã§åããã¼ã¿ãå ±æããããã¨ããã±ã¼ã¹ã¯ããããã¨æãã¾ãããã ããåæã¢ããªã¯ãã¼ã¿ã»ããã®ç¹å®ã®æç¹ã®ä¸è²«æ§ã®ããã¹ãããã·ã§ããã«å¯¾ãã¦å¦çãè¡ãã¹ãã§ãããããä»»æã®æç¹ã§æ´æ°ãçºçããæ¥åã¢ããªã®ãã¼ã¿ã»ããã«ãã®ã¾ã¾ã¢ã¯ã»ã¹ããããã«
Understanding how checkpointing works in HDFS can make the difference between a healthy cluster or a failing one. Checkpointing is an essential part of maintaining and persisting filesystem metadata in HDFS. Itâs crucial for efficient NameNode recovery and restart, and is an important indicator of overall cluster health. However, checkpointing can also be a source of confusion for operators of Apa
HDFSæ°æ©è½ç·ã¾ã¨ãin 2015 ï¼æ¥æ¬Hadoopã¦ã¼ã¶ã¼ä¼ ã©ã¤ããã³ã°ãã¼ã¯ï¼ Cloudera World Tokyo 2015ãè¬æ¼è³æï¼
Twitter runs multiple large Hadoop clusters that are among the biggest in the world. Hadoop is at the core of our data platform and provides vast storage for analytics of user actions on Twitter. In this post, we will highlight our contributions to ViewFs, the client-side Hadoop filesystem view, and its versatile usage here. ViewFs makes the interaction with our HDFS infrastructure as simple as a
ãªã¼ãã³ã½ã¼ã¹ã®æ°ããã¹ãã¬ã¼ã¸ã¨ã³ã¸ã³ãKudu ã¤ãã«æ¬æ¥ã¢ãã¦ã³ã¹ããã Kudu (ã¯ãã¥ï¼ã次ä¸ä»£ãã¼ãã¦ã§ã¢ã«ã対å¿ãããªã¼ãã³ã½ã¼ã¹ã®ã¹ãã¬ã¼ã¸ã¨ã³ã¸ã³ã§ããã¾ã ãã¼ã¿çã§ããã3å¹´ãã®éçºæéãçµã¦ã¤ãã«å ¬éããã¾ããï¼ Super excited to finally talk about what I've been working on the last 3 years: Kudu! http://t.co/1W4sqFBcyH http://t.co/1mZCwgdOO5 â Todd Lipcon (@tlipcon) September 28, 2015 æ°æ¥åã«ãªã¼ã¯ãããè¨äºã«ãKuduã¯HDFSãHBaseãç½®ãæãããã®ã ãã¨æ¸ããã¦ãã¾ããããããã¯ééãã§ãã詳細ã¯FAQãªã©ã«ãæ¸ããã¦ãã¾ãããHDFSã¨HBaseãè£ãæ°ããã¹ãã¬ã¼ã¸ã¨ã³ã¸ã³ã§ã
Eãã©ãã¯æå¾ã®ã»ãã·ã§ã³ã¯ãHortonworksã®èé¸å³°æ§ã«ãããBest Practices of Running Hadoop on EC2 vol.2ãã§ãã ä¸å½åºèº«ã®èï¼ã·ã§ã¦ï¼ããã¯ãæ¥æ¬ã«æ¥ã¦11å¹´ç®ã¨ã®ãã¨ã æ¥æ¬èªã§èªç¶ã«è©±ããã¨ã¯å¿è«ã§ãããè±ç²çã«æ©ã¾ããããããæ¥æ¬ã«é å¿ããã¦ããããã§ãã ä»åã®ã»ãã·ã§ã³ã§ã¯ãHadoopé¢é£ã¨è¨ããã¨ã§ãå æ¥ã®Jaws Days 2015ã§ã®ã»ãã·ã§ã³ï¼Hadoop Trends and Best Practices of Running Hadoop on EC2ï¼ã§è©±ããªãã£ãã³ã¢ãªé¨åãã話ããã ãã¾ããã Hadoopã®ææ°ç¶æ³ ã¯ããã«ãJaws Days 2015ã§ã®ã»ãã·ã§ã³ã¨åæ§ã«ãHadoopçéã§ã®ååãªã©ã軽ã話ãã¦ããã ãã¾ããã æè¿ã®Hadoopçéã®ååãä¸è¨ã§è¡¨ããªãã°ãããã1â2å¹´ã¯ã³ã
Error message : Directory is not found or not writable (DATA_DIR) Directory is not found or not writable (DIFF_DIR) Directory is not found or not writable (BACKUP_DIR) Directory is not found or not writable (CACHE_DIR) Site admin: whitestar Copyright © 2006-2023 whitestar. All Rights Reserved. Icons powered by famfamfam. PukiWiki 1.5.0 Copyright © 2001-2006 PukiWiki Developers Team. License is GPL
ããã«ã¡ã¯ï¼ æ¨å¹´ç¥äººã®ãªã¼ã±ã¹ãã©æ¼å¥ä¼ã§è´ããã¡ã³ãã«ã¹ã¾ã¼ã³äº¤é¿æ²ç¬¬ï¼çªãã¤ã¿ãªã¢ãã大好ããªï¼æè¡é¨ã®ç³å·æã§ãï¼ ãããªãã¤ã¿ãªã¢ã大好ããªç§ã§ãã Hive ã®ãã¼ã¿ç§»è¡ã大好ãã¨ããä½ã§ï¼ ä»åã®è¨äºã§ã¯ãªã³ãã¬ãã¹ã§ Hive ãé å¼µã£ã¦éç¨ãã¦ããæ¹ãã¡ã«åãã¦ï¼ã©ããã¦ãã¨ããã¨ãã® Hive ã®ãã¼ã¿ç§»è¡æ¹æ³ãç´¹ä»ãããã¨æãã¾ãï¼ å¼ç¤¾ã§ã¯æè¿ï¼Cloudera's Distribution including Apache Hadoop 3 update 2 (CDH3u2) ãã CDH 4.1.2 ã«ãã¼ã¸ã§ã³ã¢ãããè¡ãªã£ã¦ãã¾ãï¼ ãã®ããã«ãªã³ãã¬ãã¹ã§ Hive ãéç¨ãã¦ããæ¹ãã¡ã®ä¸ã«ã¯ï¼ãã§ã«æã£ã¦ãããã¼ã¿ããã¾ã移è¡ãããã¨ããæ¹ãå¤ããã¨æãã¾ãï¼ Hive ã«ã¯ç¾ç¶ MySQL ã® mysqldump ã®ãããªæ©è½ãæä¾ããã¦ããªãã®ã§ã
1å¹çã®è¯ã HiveQL ãæ¸ãã¨ãã«æ°ãã¤ããã¹ããã¨ãã¾ã¨ãã¦ã¿ãã 以ä¸ã«æ¸ãããã¨ã¯ãã»ã¨ãã©å ¨é¨èªåãªãã®è§£éãªã®ã§ãééããå¤ã ããã¨æãã¾ã Hadoopä¸è¬ã®ãã¥ã¼ãã³ã°ã«é¢ãã¦ã¯ããããåèã«ããã http://www.cloudera.co.jp/jpevents/cloudera-world-tokyo/pdf/A3_Hadoop%E3%81%AE%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E8%A8%AD%E8%A8%88_%E9%81%8B%E7%94%A8%E3%81%AE%E3%83%9D%E3%82%A4%E3%83%B3%E3%83%88.pdf Hadoopæ¬ ãåèã«ããã®è³æã®è£è¶³ãã¦ã¿ãâ ã©ãã¯å ãããã¯ã¼ã¯ã¨ã©ãã¯éãããã¯ã¼ã¯ã¯ä½ãéãã®ãï¼ (p.69 ããããã¯ã¼ã¯ãããã¸ã¨Hadoopã / p.267
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}