Weâve covered some good ground already, some blabber about Redis in general, and also some thoughts on when using it could be beneficial. The other big question is: How do I integrate that stuff in my application? How do I get my objects to be stored neatly in Redis? The simplest way is to just use the redis-rb library and talk to Redis almost directly. Thatâs quite low level compared what youâre
å¤ããã¼ oldname ãæ°ãããã¼ newname ã«ãªãã¼ã ãããããæ°ãããã¼ããã§ã«åå¨ããå ´åãä¸æ¸ãããã
Gem · Code · Docs · Wiki
update, 2017: The book is many years old, but still relevant. Redis has evolved a lot, but most of that has been in the form of internal improvements, new advanced features (like lua scripting) and awesome new data types. The best way to learn Redis is still to start by understanding the fundamentals presented in this book. PDF version The epub version is now available There are also Russian and I
Note è±èªã®æ¬å®¶ã®ãã¼ã¸ã¯ã PHPã使ã£ã¦èª¬æ 説æãã¦ãã¾ããããã®ãã¼ã¸ã§ã¯Python㨠Tornado ã使ã£ããã¥ã¼ããªã¢ã«ã«å¤ãã¦ããã¾ãã Bitbucketã® ãªãã¸ã㪠ã«ããã®ãã¥ã¼ããªã¢ã«ã®ãã¡ã¤ã«ä¸å¼ãå«ã¾ãã¦ãã¾ãã tutorial/retwis/ ãã©ã«ããèªåã®ä½æ¥ãã©ã«ãã«ããã¦ã retwis_start.py ã«ããããã説æããå 容ã追å ã§å®è£ ãã¦ãã£ã¦ãã ããããªããå®åã«èªä¿¡ã®ããæ¹ã¯ãPHPãRubyã®åèå®è£ ã ããè¦ãªããã RegisterHandler ãã FollowHandler ã¯ã©ã¹ãPythonã«ç§»æ¤ãã¦ã¿ã¦ãã ããã ã¾ãã @yssk22 æ°ãnode.jsçãå®è£ ãã¦ããã¾ãããããããªãã¸ããªã®ä¸ã«å ¥ã£ã¦ãã¾ãã®ã§ãèå³ã®ããæ¹ã¯ãã¡ãã®ãã¡ã¤ã«ã®å 容ã«èªã¿æ¿ãã¦ãã ããã Redisã¨Pythonã使ã£ãã·ã³ã
翻訳ã«ã¤ãã¦Â¶ ãã®ããã¥ã¡ã³ãã¯ãRedisã®Wiki(http://code.google.com/p/redis/wiki/)ã®å 容ãåèã«ããªãããæ§æãªã©ã¯Sphinxã«åããã¤ã¤ç¿»è¨³ãã¦ãã¾ããã¾ããå¿ è¦ã«å¿ãã¦ãé å¸ç©ã®ä¸ã®ãã¡ã¤ã«ãªã©ãå¼ç¨ããªãã訳ãã¦ãã¾ãã
Consider a NoSQL solution such as Redis the next time you need to implement search... Last week I demonstrated how to setup autocomplete in a new Rails 3.1 app using the Soulmate gem, from SeatGeek. Soulmate uses Redis to cache all of the autocomplete phrases in memory, providing lightning fast query results. While autocomplete is a very useful feature and a common web site design element, what re
# Create a vector index using the HNSW algorithm, 768 dimension length, and inner product distance metric > FT.CREATE idx-videos ON HASH PREFIX 1 video: SCHEMA content_vector VECTOR HNSW 6 TYPE FLOAT32 DIM 768 DISTANCE_METRIC IP content TEXT metadata TEXT # Add a video vector with metadata > HSET video:0 content_vector â\xa4q\t=\xc1\xdes\xbdZ$<\xbd\xd5\xc1\x99<b\xf0\xf2<x[â¦\xf8<â content âSUMMARY:
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}