ä¹å·å¤§å¦è«è©±ä¼ãIMI Colloquiumã https://www.imi.kyushu-u.ac.jp/seminars/view/3001Read less

The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to
ãã¼ã¿æ§é ã¨ã¢ã«ã´ãªãºã Advent Calendar 2019ã®1æ¥ç®ã®è¨äºã§ãã 2æ¥ç®ã¯@yurahunaããã«ãããä¸è§å½¢åå²ã®æ°ãä¸ãã¨ã©ã³ãã ãµã³ããªã³ã°ãã§ãã 6æã«ã°ã¬ãã°ã»ã¤ã¼ã¬ã³æ°ã®HPã§è¦ã¤ããé åçæã¢ã«ã´ãªãºã ã«ã¤ãã¦ããã°ãæ¸ãã¾ããã ãã®ãã¨ã«å ãã¿ã®è«æ1ãèªãã§ããã®ã§ããããããããé åçæã¢ã«ã´ãªãºã ãå«ãã§ããã®ã§Goã§ã©ã¤ãã©ãªåãã¦ã¿ã¾ããã deltam/perm: Permutation generator based on group theory written in Go èªåã®ãã³ããã¼ã¯ã§ã¯å台颿°ã§å®è£ ãããã¤ã¼ããªã¢ã«ã´ãªãºã ãã33ï¼ ã»ã©æ©ãã§ãããé«éãã売ãã¨ããããããé åã¸ã®æå°éã®æä½ã»ããã®ã¿ãé§ä½¿ãã¦é åçæã§ããªããï¼ãã¨ããç ç©¶ã®æµãããåºã¦ããå¯ç£ç©çãªã¢ã«ã´ãªãºã ã§ãã ãã ãã®æå°éã®æä½ã»ããã
æ´æ°ã®åå æ´æ°åé¡ãè§£ãã«ããã£ã¦ããããåãçºæ®ããã®ã¯ååå¼ã大å¦ã®æ°å¦ç§ã¨ãã«ããã¨ããã«åå¤é¡ãç¿ã£ã¦ããã®ä»£è¡¨ä¾ã¨ãã¦åºã¦ãã¾ããããå鍿°å¦çµãã£ãã°ããã®çå¾ã«ãå°ä½é¡ããªãã¦ãããã¦ããæå¤ã¨ãªãã§å°ä½ãªãã¦ããã®ãããã«ã¯ãã³ã¨æ¥ãªãã£ãããã¾ãã ããããããããå©ç¨ããåé¡ãæ±ã£ã¦ãããããããªãã®ã§ãä¸å¿ãè³æã¨ãã¦ã覧ä¸ããã 2æ° a, b ããï½ãæ³ã¨ãã¦åå â a-b ãï½ã§å²ãåãããã¤ã¾ãæ´æ°ï½ãç¨ãã¦ãa-b=pkã¨ãããã ï¼ãããã¯ãpã§å²ã£ãä½ããçããï¼ ããã aâ¡ï½ãï¼mod pï¼ã§è¡¨ãã ä¾ãã°ã 11â¡6â¡1ãï¼mod 5ï¼ 11â¡8â¡5â¡2ã (mod 3)ãã¨ããæãã§ãã ãã®ååå¼ã«ããã¦ã¯ãå²ãç®ä»¥å¤ã®è¨ç®ã¯æ®éã®ååæ¼ç®ã¨åæ§ã«ã§ããã¨ããããããã¨ãããããªãã¡ã
ã¢ã³ãã£ã»ãã¼ã«åé¡ éã¾ã£ã3ã¤ã®ãã¢ã®ãã¡ãå½ããã¯1ã¤ããã¬ã¼ã¤ã¼ã1ã¤ã®ãã¢ã鏿ãããã¨ãä¾ç¤ºã®ããã«å¤ãã®ãã¢ã1ã¤éæ¾ããããæ®ã2æã®å½ããã®ç¢ºçã¯ç´æçã«ã¯ãããã 1/2ï¼50%ï¼ã«ãªãããã«æããããã¯ããã¦ããã¯æ£ããã ãããã ã¢ã³ãã£ã»ãã¼ã«åé¡ï¼ã¢ã³ãã£ã»ãã¼ã«ããã ããè±: Monty Hall problemï¼ã¨ã¯ã確çè«ã®åé¡ã§ããã¤ãºã®å®çã«ãããäºå¾ç¢ºçããããã¯ä¸»è¦³ç¢ºçã®ä¾é¡ã®ä¸ã¤ã¨ãªã£ã¦ãããã¢ã³ãã£ã»ãã¼ã«ï¼è±èªçï¼ï¼Monty Hall, æ¬åï¼Monte Halperinï¼ãå¸ä¼è ãåããã¢ã¡ãªã«ã®ã²ã¼ã ã·ã§ã¼çªçµããLet's make a dealï¼è±èªçï¼[注é 1]ãã®ä¸ã§è¡ãããã²ã¼ã ã«é¢ããè«äºã«ç±æ¥ãããä¸ç¨®ã®å¿çããªãã¯ã«ãªã£ã¦ããã確çè«ããå°ãããçµæã説æããã¦ãããªãç´å¾ããªãè ãå°ãªããªããã¨ãããã¢ã³ãã£ã»ãã¼ã«
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}