ã¯ããã« ãã¼ã¿åæãè¡ãéããããã®ãã¼ã¿ã®ç¹å¾´ãç¥ãããã«é »ç¹ã«å¹³åãåæ£ï¼ãã¼ã¿ã®ã°ãã¤ãï¼ãè¨ç®ãã¾ãã ãããã¯ãnåã®ãã¼ã¿ãx_1,x_2,\ldots,x_nã¨è¡¨ãã¨ããããã次ã®ãããªå¼ã§è¨ç®ã§ãã¾ããã å¹³å m_n = \frac{1}{n}\sum_{i=1}^{n}x_i åæ£ \sigma_{n}^2 = \frac{1}{n}\sum_{i=1}^{n} (x_i - m_n)^2 ãã®è¨ç®å¼ãæç´ã«ã³ã¼ã(rust)ã«è½ã¨ãè¾¼ãã¨æ¬¡ã®ããã«è¨è¿°ã§ãã¾ããï¼ããrustãæ¸ãããã¨ãªãæ¹ã§ãããã°ã©ãã³ã°ã«é¦´æã¿ã®ããæ¹ã§ããã°ãªãã¨ãªããããã¨æãã¾ããï¼ // å¹³å fn mean(data: &Vec<f64>) -> f64 { let mut sum: f64 = 0.0; for i in 0..data.len() { sum += data[i
{{#tags}}- {{label}}
{{/tags}}