8æ19æ¥ãã25æ¥ã¾ã§ã®7æ¥éããªã¼ã¹ãã©ãªã¢ã®ã¡ã«ãã«ã³ã§çµ±åå½é人工ç¥è½å¦ä¼ï¼IJCAI;International Joint Conference of Artificial Intelligenceï¼ãéå¬ããã¦ãã¾ãããã®ã¤ãã³ãã«åå¾ãã¦éå¬ãããã¯ã¼ã¯ã·ã§ããã®ä¸ã¤ãï½¢ä¸çæåã®AIå®ç¨è£½åã®å ±æã¨åå©ç¨ã¯ã¼ã¯ã·ã§ããï¼The First International Workshop on Sharing and Reuse of AI Work Productsï¼ï½£ã«ãçè ãåå ãã¾ããããã®å 容ããç´¹ä»ãã¾ãã
This series is available as a full-length e-book! Download here. Free for download, contributions appreciated (paypal.me/ml4h)RoadmapPart 1: Why Machine Learning Matters. The big picture of artificial intelligence and machine learning â past, present, and future. Part 2.1: Supervised Learning. Learning with an answer key. Introducing linear regression, loss functions, overfitting, and gradient des
Raspberry Piã¨TensorFlowã使ã£ããã£ã¼ãã©ã¼ãã³ã°éçºç°å¢ 以ä¸ã®è¨äºã§Raspberry Piã¨TensorFlowã使ã£ããã£ã¼ãã©ã¼ãã³ã°ã®éçºç°å¢ã®æ§ç¯æ¹æ³ãç´¹ä»ãã¾ããã è¨äºã®æå¾ã®æ¹ã«ãèªåãã¼ã¿ã®å¦ç¿ãããå¦ç¿ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã§å¤å¥ã¾ã§å®æ½ã§ããèªåã®ããã±ã¼ã¸ãtensorflow-piããç´¹ä»ããã¦ããã ãã¾ããã ãã ãREADMEã ãè¦ã¦ããæå³ä¸æãªè±èªã§è¯ãããããªãã¨æãã¾ãã®ã§ãä»åã¯å®ä¾ã交ããªãããã®ã½ããã®ä½¿ãæ¹ãç´¹ä»ãããã¨æãã¾ãã ä¾é¡ã§ããã以åãããã§è©±é¡ã«ãªã£ãããããã³ãã®å¹»ã®é¡èªèæ©è½ãããã¾ãã詳ããã¯ä»¥ä¸åç §ä¸ããã éçºæ±ºå®ï¼ã¨ãããã¥ã¼ã¹ã¯è©±é¡ã«ãªã£ããã®ã®ããã®å¾ç¶å ±ãã¨ãã¨èããã¾ãããããããæè¡çã«ä¸å¯è½ãªãããã¨ããåãèããã¦ããããã¾ããã å¥ããããããã³ã¨Raspberry Pi
AIã·ã¹ãã é¨ã®å¥¥æï¼@pacocatï¼ã§ããAIã·ã¹ãã é¨ã§ã¯ãAIç 究éçºã°ã«ã¼ãã«æå±ãã¦ããã主ã«å¼·åå¦ç¿ãç¨ããã²ã¼ã AIã®ç 究éçºãè¡ã£ã¦ãã¾ãã DeNAã§ã¯ãæ§ã ãªäºæ¥ãã¡ã¤ã³ã®ãã¼ã¿ãå®éã«ä½¿ããªããæ©æ¢°å¦ç¿ã使ã£ããµã¼ãã¹éçºãæ¨é²ãã¦ãããä¸ã§ãã²ã¼ã ã¯è±å¯ãªãã¼ã¿ã»ã·ãã¥ã¬ã¼ã¿ã¼ããããããæå 端ã®ã¢ã«ã´ãªãºã ãåããããã®ç°å¢ãèªåã§æã£ã¦ããã®ãç¹å¾´ã§ãã å ¨ç¤¾çã«ãæ©æ¢°å¦ç¿ãµã¼ãã¹ã®ãã¼ãºãé«ã¾ã£ã¦ããèæ¯ã®ä¸ã7/5ã«Googleæ§ã«ããæ©æ¢°å¦ç¿ç³»APIåå¼·ä¼ãå½ç¤¾ã»ããã¼ã«ã¼ã ã«ã¦éå¬ããã¾ãããä»åã¯ãåå¼·ä¼ã®å 容ãããã°ã§ã¬ãã¼ããããã¨æãã¾ãã Googleã¨ããã°ãå æ¥éå¬ãããGoogle I/O 2017ã§ã"AI first"ã¨ããã¡ãã»ã¼ã¸ãæ¹ãã¦å¼·èª¿ããã¦ãã¾ããããå®éã«Google LensãGoogle Homeãªã©æ©æ¢°å¦ç¿ãæ´»ç¨
AIæ代ãç¶²ç¾ çã«ç¥ãããã®ä¸åãéã«åè¡!! è§å·ã¢ã¹ãã¼ç·åç 究æã¯2017å¹´7æ20æ¥ï¼æ¨ï¼ã«ããAIç½æ¸ 2017ãï¼ç·¨ï¼ç¬ç«è¡æ¿æ³äººæ å ±å¦çæ¨é²æ©æ§ AIç½æ¸ç·¨éå§å¡ä¼ï¼ãåè¡ãã¾ããããã£ã¼ãã©ã¼ãã³ã°ã®ç»å ´ã»æ®åã«ãã£ã¦ãå®ç¨ã«åããçãä¸ãããè¦ããAIï¼äººå·¥ç¥è½ï¼ã®ç¾ç¶ãç¶²ç¾ çã«åãã¾ã¨ãããæ¬æ ¼çãªç½æ¸ããã®ãAIç½æ¸ 2017ãã«ãªãã¾ãã
ããã½ããã¯ã¯ãã£ã¼ãã©ã¼ãã³ã°ï¼æ·±å±¤å¦ç¿ï¼ãæ´»ç¨ããå±å ã§ã«ã¡ã©ã«æ ã£ãæ©è¡è ã®ç¹å¾´ãææ¡ããé²è·¯ãäºæ¸¬ããæè¡ãéçºããã2017å¹´7æ19æ¥ãæ¬èªåæã«åçãããé§ ã空港ãªã©ã®å®å ¨ç®¡çãé²ç¯ãå°å£²åºã§å®¢ã®åç·ãææ¡ãããã¼ã±ãã£ã³ã°ãªã©ã¸ã®æ´»ç¨ãè¦è¾¼ããã éçºéç¨ã§ã¯å¹´é½¢ãæ§å¥ãã¤ããè»ããã®æç¡ã¨ãã£ãæ§ã ãªå±æ§ãæã¤æ©è¡è ã®ç»åãã¼ã¿ãç¨æãã深層å¦ç¿æè¡ã«ãã£ã¦æ©è¡è ã®å±æ§ã¨ç»åã®é¢ä¿æ§ãå¦ç¿ããããããã«æ©è¡è ã®é²è·¯ãäºæ¸¬ããããã°ã©ã ãçµã¿åããããã¨ã§ãç¹å®ã®å±æ§ãæã£ãæ©è¡è ã®é²è·¯ãäºæ¸¬å¯è½ã«ãããå®é¨ã§ã¯ãã«ã¡ã©ã«æ ã£ã5ï½6人ã®å±æ§ã¨é²è·¯ãå ¨ã¦äºæ¸¬ã§ããã¨ããã åæè¡ã¯2017å¹´6æ7æ¥ãã9æ¥ã¾ã§ãã·ãã£ã³æ¨ªæµã§éå¬ãã¦ããç»åã»ã³ã·ã³ã°ã·ã³ãã¸ã¦ã ã§ç´¹ä»ãã¦ãããå社ã«ããã¨ãããã«æ¹è¯ãéãã¦ç²¾åº¦ãé«ãããã¨ããã
ãã®è¨äºã¯2å¹´åã®ä»¥ä¸ã®è¨äºã®ã¢ãããã¼ãã§ãã ååã¯ã¨ãããããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã¨ããããã¼ã¿åæè·ä¸è¬ã¨ãã¦ã®ã¹ãã«è¦ä»¶ã¨ãã¦ããã¿ã©ãã¼ãç¨åº¦ã®çµ±è¨å¦ã®ç¥èããã¯ããã¿ç¨åº¦ã®æ©æ¢°å¦ç¿ã®ç¥èããRãPythonã§ã³ã¼ããçµããããSQLãæ¸ãããã¨ãã4ç¹ãæããã®ã§ããã ã§ã2å¹´çµã£ããããããçµ±è¨åæã¡ã¤ã³ã®ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãï¼æ¬ç©ï¼åã³ãã®ä»ã®çµ±è¨åæè·ï¼vs. æ©æ¢°å¦ç¿ã·ã¹ãã å®è£ ã¡ã¤ã³ã®æ©æ¢°å¦ç¿ã¨ã³ã¸ãã¢ã¨ãããã£ãªã¢ã®åå²ãå¦å®ã«ãªã£ã¦ããä¸ã«ãåæ¹é¢ã§æè¡é©æ°ã»æ®åãé²ãã§æ¥ãã®ã§ãä¸è¨ã®éå»è¨äºã®ã¹ãã«è¦ä»¶ã®ã¾ã¾ã§ã¯å¯¾å¿ã§ããªãç¶æ³ã«ãªã£ã¦ããããã«è¦åãããã¾ãã ããã§ãä»åã®è¨äºã§ã¯ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã*1ãæ©æ¢°å¦ç¿ã¨ã³ã¸ãã¢ãã®ããããã«ã¤ãã¦ãç¾æ®µéã§åãå人çã«èãããæä½éã®ã¹ãã«è¦ä»¶ãããã£ããæ¸ãã¦ã¿ãããã¨æãã¾ããæåã«ããããæ¸
å½å ã®âç¥ã®æåç·âãããå¤é©ã®å ã®èµ·ããå¾ãæªæ¥ãä¼ããã¢ã¹ãã¼ã¨ãã¹ãã¼ããKDDIç·åç 究æã®å¸è¶³åä¸éæ°ã«ãã人工ç¥è½ã«ã¤ãã¦ã®ææ°ååããå±ããã¾ãã ä¸çä¸ã®ãã¸ã§ããªã¼ãã¯ãªã¨ã¤ã¿ã¼ãéã¾ãä¸å¤§ã¤ãã³ããSXSW Interactiveãã«ãæ¨å¹´ã«å¼ãç¶ãåå ãããæ¨å¹´ã®SXSWã¯ããã®ç´åã«çºè¡¨ãããAlphaGoã®ç»å ´ã§äººå·¥ç¥è½é¢é£ã®è°è«ã大ããçãä¸ãã£ãããä»å¹´ã¯ããã«æ¯ã¹ãã¨ããã¾ã§å¤§ããªè©±é¡ã¯ãªãã£ãããããããå¼ãç¶ãçãä¸ãããè¦ãã人工ç¥è½ã«ã¤ãã¦ãåã»ãã·ã§ã³ã§ã©ã®ãããªè°è«ãè¡ãªãããã®ããçè ã¨ãã¦ã注ç®ããªããåå ãããæ¬è¨äºã§ã¯ãæ¨å¹´ã»ä»å¹´ã¨é£ç¶ãã¦äººå·¥ç¥è½é¢é£ã»ãã·ã§ã³ã®è´è¬ãä¸å¿ã«åå ãã観ç¹ããSXSWã§ã®è°è«ãç´¹ä»ãããããã®è°è«ã示åãã人工ç¥è½ã®æ代ã«ãããå ±é課é¡ã«ã¤ãã¦èå¯ããã AlphaGoã®é®®çãªç»å ´ãã1å¹´ãçµé æ¨å¹´ã®SX
ã¤ã³ãã«ã人工ç¥è½ã¸ã®åãçµã¿ãã¤ãã³ãã«ã¦è§£èª¬ããããæãç®ç«ã£ã¦ããã®ã¯Preferred Networksã¨ã®åæ¥ãããã¦æ·±å±¤å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯ã§ããChainerã§ãã£ãã AIæ代ã®ã¤ã³ãã«ã®æ¦ç¥ãä¸åã« ãã¤ã¯ãããã»ããµã®ãªã¼ãã¼ã§ããã¤ã³ãã«ã¯2017å¹´4æ6æ¥ãé½å ã«ã¦äººå·¥ç¥è½ã«ãã©ã¼ã«ã¹ããã¤ãã³ãããã¤ã³ãã«AI Dayããéå¬ãããè¿å¹´ã®äººå·¥ç¥è½ã¯ããã¾ã§ã®ã«ã¼ã«ãã¼ã¹ãããæ©æ¢°å¦ç¿ã深層å¦ç¿ãªã©ã®æ§ã ãªã¢ã«ã´ãªãºã ã¨è¨å¤§ãªãã¼ã¿ã«ãã£ã¦ãå®ç¨åã«ããã¦å¤§ããé²åãããã¨ã¯ããå¨ç¥ã®äºå®ã ãããããããã®ã·ã¹ãã ã«ä½¿ããã¦ããã®ã¯ãé«éãªè¡åè¨ç®ãå¤æ°ã®ã³ã¢ã§ä¸¦åå¦çããGPUã ãGPUã®ãªã¼ãã¼ã§ããNVIDIAããï¼NVIDIAã¯ï¼ãã¸ã¥ã¢ã«ã³ã³ãã¥ã¼ãã£ã³ã°ããAIã³ã³ãã¥ã¼ãã£ã³ã°ã«ç§»è¡ãããã¨å®£è¨ããã»ã©ãGPUã¯äººå·¥ç¥è½ãããã深層å¦ç¿ã«åãããã©ããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}