ã¯ãªãã¿ã³å¸å½ã®æå·æã解èªãããï¼åï¼ï¼ - Download as a PDF or view online for free
第ï¼ï¼åæ¥æ¬æ å ±ãªãªã³ããã¯ï¼JOI2013/2014ï¼æ¥å£ãã¬ã¼ãã³ã°å宿ã§ã®è¬ç¾©è³æã§ãï¼ http://www.ioi-jp.org/camp/2014/2014-sp_camp-rules.html ãæ¦è¦ã æ£è¦è¡¨ç¾ã¨ã¯ãã¿ã¼ã³ãããã³ã°ã®ããã®è¨æ³ã§ããï¼æååæ¤ç´¢ã®ä¾¿å©ãªéå ·ã¨ãã¦åºã親ãã¾ãã¦ãã¾ãï¼ãã®è¬ç¾©ã§ã¯ï¼æ£è¦è¡¨ç¾ã®åºç¤ããå§ãï¼ãæã®é«ããã¨ããæ§è³ªã«æ³¨ç®ãã¦æ£è¦è¡¨ç¾ã®è£å´ã«æ½ãæ°çæ§é ã«è¿«ã£ã¦ããã¾ãï¼1960年代ããæªè§£æ±ºã§ãããæã®é«ãåé¡ãã«æµªæ¼«ãæãã¦ããããã¨å¹¸ãã§ãï¼Read less
1. 2012/06/12 ãã£ã¼ã»ã¨ãã»ã¨ã¼ æ¸è°·ãªãã£ã¹ (TopCoder Meetup in Japan) ããã°ã©ãã³ã°ã³ã³ãã¹ãã§ã® ä¹±æã¢ã«ã´ãªãºã æ±äº¬å¤§å¦æ å ±çå·¥å¦ç³»ç ç©¶ç§ ç§è æå / [[iwi]] 1 2. èªå·±ç´¹ä» ⢠ç§è æå / [[iwi]] â Twitter: @iwiwi ⢠æ±äº¬å¤§å¦ æ å ±çå·¥å¦ç³»ç ç©¶ç§ ã³ã³ãã¥ã¼ã¿ç§å¦å°æ» ⢠ããã°ã©ãã³ã°ã³ã³ãã¹ãåã好ã â ä¸ç大ä¼ã®å¸¸é£ããã£ã¦ãã¾ã â ãã 1 年㧠3 åï¼æ¥æãè¡ãã¾ã ⢠ããã°ã©ãã³ã°ã³ã³ãã¹ããã£ã¬ã³ã¸ããã¯å ±è 2 3. ä»æ¥ã®è©± ãä¹±æã¢ã«ã´ãªãºã ã ⢠æ¢åã®ä¹±æã¢ã«ã´ãªãºã ã®ç´¹ä»ã延ã ã¨ã¯ãã¾ãã â ããããã¢ã«ã´ãªãºã 解説ã¯ä¸æ¯ããã¾ã ⢠ã³ã³ãã¹ãã«ç¦ç¹ãçµãï¼ä¹±æã¢ã«ã´ãªãºã ãè¨è¨ ã§ããããã«ããï¼ã¨ãããã¨ãç®æã ï¼ç°¡åãã®è©±ã«ãªãã¾ãï¼ä¸ä¸ç´è ã®
æ¨æ¥ï¼PFI ã»ããã¼ã«ã¦ã大è¦æ¨¡ã°ã©ãã¢ã«ã´ãªãºã ã®æå 端ãã¨ããã¿ã¤ãã«ã§çºè¡¨ãããã¦ãããã¾ããï¼ã¹ã©ã¤ãã¯ä»¥ä¸ã«ãªãã¾ãï¼ å¤§è¦æ¨¡ã°ã©ãã¢ã«ã´ãªãºã ã®æå 端 View more presentations from iwiwi å½æ¥ã¯ Ustream ãããã¦ããï¼é²ç»ãããçºè¡¨ãã覧ã«ãªãã¾ãï¼ http://www.ustream.tv/recorded/19713623 å 容ã®æµãã¨ãã¦ã¯ï¼ä»¥ä¸ã®ããã«ãªã£ã¦ãã¾ãï¼ å°å ¥ ã¢ã«ã´ãªãºã çéã§ã®è©±é¡ ææ°ã®ç 究åå éè·¯ãããã¯ã¼ã¯ã§ã®æçè·¯ã¯ã¨ãªå¦ç åºç¤çãªææ³ï¼åæ¹å Dijkstraï¼A*, ALT ææ°ã®ææ³ï¼Highway Dimension + Hub-Labeling Algorithm DB çéã§ã®è©±é¡ ææ°ã®ç 究åå è¤éãããã¯ã¼ã¯ã§ã®æçè·¯ã¯ã¨ãªå¦ç åºç¤çãªææ³ï¼ã©ã³ããã¼ã¯ãç¨ããæçè·é¢æ¨å® æ
Topcoder is a crowdsourcing marketplace that connects businesses with hard-to-find expertise. The Topcoder Community includes more than one million of the worldâs top designers, developers, data scientists, and algorithmists. Global enterprises and startups alike use Topcoder to accelerate innovation, solve challenging problems, and tap into specialized skills on demand.
å¹´ãæãã¦ããä¸ã¶æçµã¡ã¾ãããï¼å²¡éåã§ãï¼ ä»æ¥ã¯MinHashã¨å¼ã°ããææ³ãç´¹ä»ãã¾ãï¼ããã¯ç¹å¾´ãã¯ãã«ã®é«éãªé¡ä¼¼æ¤ç´¢ã«å©ç¨ãããã¨ãã§ãã¾ã(ã¯ãã¼ã©ã¼ã®æèã ã¨Shingleã¨ãã¦ç¥ããã¦ããï¼ï¼ ä»ãä¸ã®ä¸ã®ãããã種é¡ã®ãã¼ã¿ãï¼é«æ¬¡å ã®ãã¤ããªãã¯ãã«ãããªãç¹å¾´ãã¯ãã«ã§è¡¨ããã¦å¦çãããããã«ãªã£ã¦ãã¾ããï¼ä¾ãã°ææ¸ãã¼ã¿ã§ããã°ææ¸ä¸ã«åºç¾ããåèªããã¼ã¯ã¼ãã®åºç¾æ å ±ã並ã¹ãåèªç©ºéãã¯ãã«ï¼Bag of Wordsï¼ã§è¡¨ãï¼ç»åãã¼ã¿ãï¼SIFTãã¯ããã¨ããå±æç¹å¾´éã並ã¹ãç¹å¾´ãã¯ãã«ï¼ã¨ãããSkecthåãããã®ï¼ã¨ãã¦è¡¨ãã¾ãï¼è¡åæ å ±ãæç³»åãã¼ã¿ãç¹å¾´éããã¾ãæ½åºããï¼ã°ã©ããã¼ã¿ãFast subtree kernels[1]ã¨å¼ã°ããæ¹æ³ã§é常ã«å¹ççã«ç¹å¾´ãã¯ãã«ã«å¤æãããã¨ãã§ãï¼ã°ã©ãã®ç¹å¾´ãããæãããã¨ãã§ããã®ãæè¿ããã£
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}