Tags: mac

308

sparkline

Tuesday, November 12th, 2024

The meaning of “AI”

There are different kinds of buzzwords.

Some buzzwords are useful. They take a concept that would otherwise require a sentence of explanation and package it up into a single word or phrase. Back in the day, “ajax” was a pretty good buzzword.

Some buzzwords are worse than useless. This is when a word or phrase lacks definition. You could say this buzzword in a meeting with five people, and they’d all understand five different meanings. Back in the day, “web 2.0” was a classic example of a bad buzzword—for some people it meant a business model; for others it meant rounded corners and gradients.

The worst kind of buzzwords are the ones that actively set out to obfuscate any actual meaning. “The cloud” is a classic example. It sounds cooler than saying “a server in Virginia”, but it also sounds like the exact opposite of what it actually is. Great for marketing. Terrible for understanding.

“AI” is definitely not a good buzzword. But I can’t quite decide if it’s merely a bad buzzword like “web 2.0” or a truly terrible buzzword like “the cloud”.

The biggest problem with the phrase “AI” is that there’s a name collision.

For years, the term “AI” has been used in science-fiction. HAL 9000. Skynet. Examples of artificial general intelligence.

Now the term “AI” is also used to describe large language models. But there is no connection between this use of the term “AI” and the science fictional usage.

This leads to the ludicrous situation of otherwise-rational people wanted to discuss the dangers of “AI”, but instead of talking about the rampant exploitation and energy usage endemic to current large language models, they want to spend the time talking about the sci-fi scenarios of runaway “AI”.

To understand how ridiculous this is, I’d like you to imagine if we had started using a different buzzword in another setting…

Suppose that when ride-sharing companies like Uber and Lyft were starting out, they had decided to label their services as Time Travel. From a marketing point of view, it even makes sense—they get you from point A to point B lickety-split.

Now imagine if otherwise-sensible people began to sound the alarm about the potential harms of Time Travel. Given the explosive growth we’ve seen in this sector, sooner or later they’ll be able to get you to point B before you’ve even left point A. There could be terrible consequences from that—we’ve all seen the sci-fi scenarios where this happens.

Meanwhile the actual present-day harms of ride-sharing services around worker exploitation would be relegated to the sidelines. Clearly that isn’t as important as the existential threat posed by Time Travel.

It sounds ludicrous, right? It defies common sense. Just because a vehicle can get you somewhere fast today doesn’t mean it’s inevitably going to be able to break the laws of physics any day now, simply because it’s called Time Travel.

And yet that is exactly the nonsense we’re being fed about large language models. We call them “AI”, we look at how much they can do today, and we draw a straight line to what we know of “AI” in our science fiction.

This ridiculous situation could’ve been avoided if we had settled on a more accurate buzzword like “applied statistics” instead of “AI”.

It’s almost as if the labelling of the current technologies was more about marketing than accuracy.

Thursday, November 7th, 2024

Information literacy and chatbots as search • Buttondown

If someone uses an LLM as a replacement for search, and the output they get is correct, this is just by chance. Furthermore, a system that is right 95% of the time is arguably more dangerous tthan one that is right 50% of the time. People will be more likely to trust the output, and likely less able to fact check the 5%.

Saturday, November 2nd, 2024

Unsaid

I went to the UX Brighton conference yesterday.

The quality of the presentations was really good this year, probably the best yet. Usually there are one or two stand-out speakers (like Tom Kerwin last year), but this year, the standard felt very high to me.

But…

The theme of the conference was UX and “AI”, and I’ve never been more disappointed by what wasn’t said at a conference.

Not a single speaker addressed where the training data for current large language models comes from (it comes from scraping other people’s copyrighted creative works).

Not a single speaker addressed the energy requirements for current large language models (the requirements are absolutely mahoosive—not just for the training, but for each and every query).

My charitable reading of the situation yesterday was that every speaker assumed that someone else would cover those issues.

The less charitable reading is that this was a deliberate decision.

Whenever the issue of ethics came up, it was only ever in relation to how we might use these tools: considering user needs, being transparent, all that good stuff. But never once did the question arise of whether it’s ethical to even use these tools.

In fact, the message was often the opposite: words like “responsibility” and “duty” came up, but only in the admonition that UX designers have a responsibility and duty to use these tools! And if that carrot didn’t work, there’s always the stick of scaring you into using these tools for fear of being left behind and having a machine replace you.

I was left feeling somewhat depressed about the deliberately narrow focus. Maggie’s talk was the only one that dealt with any externalities, looking at how the firehose of slop is blasting away at society. But again, the focus was only ever on how these tools are used or abused; nobody addressed the possibility of deliberately choosing not to use them.

If audience members weren’t yet using generative tools in their daily work, the assumption was that they were lagging behind and it was only a matter of time before they’d get on board the hype train. There was no room for the idea that someone might examine the roots of these tools and make a conscious choice not to fund their development.

There’s a quote by Finnish architect Eliel Saarinen that UX designers like repeating:

Always design a thing by considering it in its next larger context. A chair in a room, a room in a house, a house in an environment, an environment in a city plan.

But none of the speakers at UX Brighton chose to examine the larger context of the tools they were encouraging us to use.

One speaker told us “Be curious!”, but clearly that curiosity should not extend to the foundations of the tools themselves. Ignore what’s behind the curtain. Instead look at all the cool stuff we can do now. Don’t worry about the fact that everything you do with these tools is built on a bedrock of exploitation and environmental harm. We should instead blithely build a new generation of user interfaces on the burial ground of human culture.

Whenever I get into a discussion about these issues, it always seems to come back ’round to whether these tools are actually any good or not. People point to the genuinely useful tasks they can accomplish. But that’s not my issue. There are absolutely smart and efficient ways to use large language models—in some situations, it’s like suddenly having a superpower. But as Molly White puts it:

The benefits, though extant, seem to pale in comparison to the costs.

There are no ethical uses of current large language models.

And if you believe that the ethical issues will somehow be ironed out in future iterations, then that’s all the more reason to stop using the current crop of exploitative large language models.

Anyway, like I said, all the talks at UX Brighton were very good. But I just wish just one of them had addressed the underlying questions that any good UX designer should ask: “Where did this data come from? What are the second-order effects of deploying this technology?”

Having a talk on those topics would’ve been nice, but I would’ve settled for having five minutes of one talk, or even one minute. But there was nothing.

There’s one possible explanation for this glaring absence that’s quite depressing to consider. It may be that these topics weren’t covered because there’s an assumption that everybody already knows about them, and frankly, doesn’t care.

To use an outdated movie reference, imagine a raving Charlton Heston shouting that “Soylent Green is people!”, only to be met with indifference. “Everyone knows Soylent Green is people. So what?”

Wednesday, October 16th, 2024

Docks and home screens

Back in June I documented a bug on macOS in how Spaces (or whatever they call they’re desktop management thingy now) works with websites added to the dock.

I’m happy to report that after upgrading to Sequoia, the latest version of macOS, the bug has been fixed! Excellent!

Not only that, but there’s another really great little improvement…

Let’s say you’ve installed a website like The Session by adding it to the dock. Now let’s say you get an email in Apple Mail that includes a link to something on The Session. It used to be that clicking on that link would open it in your default web browser. But now clicking on that link opens it in the installed web app!

It’s a lovely little enhancement that makes the installed website truly feel like a native app.

Websites in the dock also support the badging API, which is really nice!

Like I said at the time:

I wonder if there’s much point using wrappers like Electron any more? I feel like they were mostly aiming to get that parity with native apps in having a standalone application launched from the dock.

Now all you need is a website.

The biggest issue remains discovery. Unless you already know that it’s possible to add a website to the dock, you’re unlikely to find out about it. That’s why I’ve got a page with installation instructions on The Session.

Still, the discovery possibilities on Apples’s desktop devices are waaaaay better than on Apple’s mobile devices.

Apple are doing such great work on their desktop operating system to make websites first-class citizens. Meanwhile, they’re doing less than nothing on their mobile operating system. For a while there, they literally planned to break all websites added to the homescreen. Fortunately they were forced to back down.

But it’s still so sad to see how Apple are doing everything in their power to prevent people from finding out that you can add websites to your homescreen—despite (or perhaps because of) the fact that push notifications on iOS only work if the website has been added to the home screen!

So while I’m really happy to see the great work being done on installing websites for desktop computers, I’m remain disgusted by what’s happening on mobile:

At this point I’ve pretty much given up on Apple ever doing anything about this pathetic situation.

Thursday, October 10th, 2024

Mismatch

This seems to be the attitude of many of my fellow nerds—designers and developers—when presented with tools based on large language models that produce dubious outputs based on the unethical harvesting of other people’s work and requiring staggering amounts of energy to run:

This is the future! I need to start using these tools now, even if they’re flawed, because otherwise I’ll be left behind. They’ll only get better. It’s inevitable.

Whereas this seems to be the attitude of those same designers and developers when faced with stable browser features that can be safely used today without frameworks or libraries:

I’m sceptical.

Wednesday, October 9th, 2024

Report: Thinking about using AI? - Green Web Foundation

A solid detailed in-depth report.

The sheer amount of resources needed to support the current and forecast demand from AI is colossal and unprecedented.

Tuesday, September 17th, 2024

A short note on AI – Me, Robin

I hope to make something that could only exist because I made it. Something that is the one thing that it is. Not an average sentence. Not a visual approximation of other people’s work. Not a stolen concept that boils lakes and uses more electricity than anything in my household.

Wednesday, September 11th, 2024

First Impressions of the Pixel 9 Pro | Whatever

At this point, it really does seem like “AI” is “bullshit you don’t need or is done better in other ways, but we’ve just spent literally billions on this so we really need you to use it, even though it’s nowhere as good as what we were already doing,” and everything else is just unsexy functionality that makes what you do marginally easier or better. I’m sorry we live in a world where enshittification is being marketed as The Hot And Sexy Thing, but just because we’re in that world, doesn’t mean you have to accept it.

Tuesday, September 10th, 2024

What price?

I’ve noticed a really strange justification from people when I ask them about their use of generative tools that use large language models (colloquially and inaccurately labelled as artificial intelligence).

I’ll point out that the training data requires the wholesale harvesting of creative works without compensation. I’ll also point out the ludicrously profligate energy use required not just for the training, but for the subsequent queries.

And here’s the thing: people will acknowledge those harms but they will justify their actions by saying “these things will get better!”

First of all, there’s no evidence to back that up.

If anything, as the well gets poisoned by their own outputs, large language models may well end up eating their own slop and getting their own version of mad cow disease. So this might be as good as they’re ever going to get.

And when it comes to energy usage, all the signals from NVIDIA, OpenAI, and others are that power usage is going to increase, not decrease.

But secondly, what the hell kind of logic is that?

It’s like saying “It’s okay for me to drive my gas-guzzling SUV now, because in the future I’ll be driving an electric vehicle.”

The logic is completely backwards! If large language models are going to improve their ethical shortcomings (which is debatable, but let’s be generous), then that’s all the more reason to avoid using the current crop of egregiously damaging tools.

You don’t get companies to change their behaviour by rewarding them for it. If you really want better behaviour from the purveyors of generative tools, you should be boycotting the current offerings.

I suspect that most people know full well that the “they’ll get better!” defence doesn’t hold water. But you can convince yourself of anything when everyone around is telling you that this is the future baby, and you’d better get on board or you’ll be left behind.

Baldur reminds us that this is how people talked about asbestos:

Every time you had an industry campaign against an asbestos ban, they used the same rhetoric. They focused on the potential benefits – cheaper spare parts for cars, cheaper water purification – and doing so implicitly assumed that deaths and destroyed lives, were a low price to pay.

This is the same strategy that’s being used by those who today talk about finding productive uses for generative models without even so much as gesturing towards mitigating or preventing the societal or environmental harms.

It reminds me of the classic Ursula Le Guin short story, The Ones Who Walk Away from Omelas that depicts:

…the utopian city of Omelas, whose prosperity depends on the perpetual misery of a single child.

Once citizens are old enough to know the truth, most, though initially shocked and disgusted, ultimately acquiesce to this one injustice that secures the happiness of the rest of the city.

It turns out that most people will blithely accept injustice and suffering not for a utopia, but just for some bland hallucinated slop.

Don’t get me wrong: I’m not saying large language models aren’t without their uses. I love seeing what Simon and Matt are doing when it comes to coding. And large language models can be great for transforming content from one format to another, like transcribing speech into text. But the balance sheet just doesn’t add up.

As Molly White put it: AI isn’t useless. But is it worth it?:

Even as someone who has used them and found them helpful, it’s remarkable to see the gap between what they can do and what their promoters promise they will someday be able to do. The benefits, though extant, seem to pale in comparison to the costs.

Tuesday, September 3rd, 2024

Why “AI” projects fail

“AI” is heralded (by those who claim it to replace workers as well as those that argue for it as a mere tool) as a thing to drop into your workflows to create whatever gains promised. It’s magic in the literal sense. You learn a few spells/prompts and your problems go poof. But that was already bullshit when we talked about introducing other digital tools into our workflows.

And we’ve been doing this for decades now, with every new technology we spend a lot of money to get a lot of bloody noses for way too little outcome. Because we keep not looking at actual, real problems in front of us – that the people affected by them probably can tell you at least a significant part of the solution to. No we want a magic tool to make the problem disappear. Which is a significantly different thing than solving it.

Monday, September 2nd, 2024

Does AI benefit the world? – Chelsea Troy

Our ethical struggle with generative models derives in part from the fact that we…sort of can’t have them ethically, right now, to be honest. We have known how to build models like this for a long time, but we did not have the necessary volume of parseable data available until recently—and even then, to get it, companies have to plunder the internet. Sitting around and waiting for consent from all the parties that wrote on the internet over the past thirty years probably didn’t even cross Sam Altman’s mind.

On the environmental front, fans of generative model technology insist that eventually we’ll possess sufficiently efficient compute power to train and run these models without the massive carbon footprint. That is not the case at the moment, and we don’t have a concrete timeline for it. Again, wait around for a thing we don’t have yet doesn’t appeal to investors or executives.

Why A.I. Isn’t Going to Make Art | The New Yorker

Using ChatGPT to complete assignments is like bringing a forklift into the weight room; you will never improve your cognitive fitness that way.

Another great piece by Ted Chiang!

The companies promoting generative-A.I. programs claim that they will unleash creativity. In essence, they are saying that art can be all inspiration and no perspiration—but these things cannot be easily separated. I’m not saying that art has to involve tedium. What I’m saying is that art requires making choices at every scale; the countless small-scale choices made during implementation are just as important to the final product as the few large-scale choices made during the conception.

This bit reminded me of Simon’s rule:

Let me offer another generalization: any writing that deserves your attention as a reader is the result of effort expended by the person who wrote it. Effort during the writing process doesn’t guarantee the end product is worth reading, but worthwhile work cannot be made without it. The type of attention you pay when reading a personal e-mail is different from the type you pay when reading a business report, but in both cases it is only warranted when the writer put some thought into it.

Simon also makes an appearance here:

The programmer Simon Willison has described the training for large language models as “money laundering for copyrighted data,” which I find a useful way to think about the appeal of generative-A.I. programs: they let you engage in something like plagiarism, but there’s no guilt associated with it because it’s not clear even to you that you’re copying.

I could quote the whole thing, but I’ll stop with this one:

The task that generative A.I. has been most successful at is lowering our expectations, both of the things we read and of ourselves when we write anything for others to read. It is a fundamentally dehumanizing technology because it treats us as less than what we are: creators and apprehenders of meaning. It reduces the amount of intention in the world.

Friday, August 30th, 2024

s19e01: Do Reply; Use plain language, and tell the truth

Very good writing advice from Dan:

Use plain language. Tell the truth.

Related:

The reason why LLM text for me is bad is that it’s insipid, which is not a plain language word to use, but the secret is to use words like that tactically and sparingly to great effect.

They don’t write plainly because most of the text they’ve been trained on isn’t plain and clear. I’d argue that most of the text that’s ever existed isn’t plain and clear anyway.

Tuesday, August 27th, 2024

Sunday, August 11th, 2024

Aboard Newsletter: Why So Bad, AI Ads?

The human desire to connect with others is very profound, and the desire of technology companies to interject themselves even more into that desire—either by communicating on behalf of humans, or by pretending to be human—works in the opposite direction. These technologies don’t seem to be encouraging connection as much as commoditizing it.

Monday, August 5th, 2024

The Gods of Logic, by Benjamín Labatut

Benjamín Labatut draws a line from the Vedas to George Boole and Claude Shannon onward to Geoffrey Hinton and Frank Herbert’s Butlerian Jihad.

In the coming years, as people armed with AI continue making the world faster, stranger, and more chaotic, we should do all we can to prevent these systems from giving more and more power to the few who can build them.

Tuesday, July 9th, 2024

Pop Culture

Despite all of this hype, all of this media attention, all of this incredible investment, the supposed “innovations” don’t even seem capable of replacing the jobs that they’re meant to — not that I think they should, just that I’m tired of being told that this future is inevitable.

The reality is that generative AI isn’t good at replacing jobs, but commoditizing distinct acts of labor, and, in the process, the early creative jobs that help people build portfolios to advance in their industries.

One of the fundamental misunderstandings of the bosses replacing these workers with generative AI is that you are not just asking for a thing, but outsourcing the risk and responsibility.

Generative AI costs far too much, isn’t getting cheaper, uses too much power, and doesn’t do enough to justify its existence.

Friday, July 5th, 2024

AI and Asbestos: the offset and trade-off models for large-scale risks are inherently harmful – Baldur Bjarnason

Every time you had an industry campaign against an asbestos ban, they used the same rhetoric. They focused on the potential benefits – cheaper spare parts for cars, cheaper water purification – and doing so implicitly assumed that deaths and destroyed lives, were a low price to pay.

This is the same strategy that’s being used by those who today talk about finding productive uses for generative models without even so much as gesturing towards mitigating or preventing the societal or environmental harms.

Wednesday, July 3rd, 2024

Declare your AIndependence: block AI bots, scrapers and crawlers with a single click

This is a great move from Cloudflare. I may start using their service.

Amateur Mathematicians Find Fifth ‘Busy Beaver’ Turing Machine | Quanta Magazine

The mathematics behind the halting problem is interesting enough, but what’s really fascinating is the community that coalesced. A republic of numbers.