
此條目介紹的是數學上最常用的意義,即物件的個數。关于其他的意義,请见「
基數」。
在日常交流中,基數(cardinal number,cardinal)或量數,是對應量詞的數,例如「一顆蘋果」中的「一」。與序數相對,序數是對應排列的數,例如「第一名」中的「一」及「二年級」中的「二」。
在數學集合论中,基數或势,即集合中包含的元素的「个数」(參見势的比较),是日常交流中基數的概念在數學上的精確化(並使之不再受限於有限情形)。有限集合的基數,其意義與日常用語中的「基數」相同,例如
的基數是3。無限集合的基數,其意義在於比較兩個集的大小,例如整數集和有理數集的基數相同;整數集的基數比實數集的小。
阿列夫數Aleph-0,最小的無限基數
康托尔在1874年-1884年引入最原始的集合論(現稱樸素集合論)時,首次引入基數概念。
他最先考慮的是集合
和
,它們並非相同,但有相同的基數。驟眼看來,這是顯而易見,但究竟何謂兩個集合有相同數目的元素?
康托爾的答案,是通过所謂的一一對應,即把兩個集合的元素一對一的排起來——若能做到,兩個集合的基數自然相同。這答案,容易理解但卻是革命性的,因為用相同的方法即可比較任意集合的大小,包括無窮集合。
最先被考慮的無窮集合是自然數集
及其無限子集。他把所有與
能一一對應的集為可數集。令康托爾意外的是,原來
的所有無限子集都能與
一一對應。他把
的基數稱為
,是最小的艾禮富數。
康托爾發現,原來有理數集合與代數數集合也是可數的。於是乎在1874年初,他嘗試證明是否所有無限集合均是可數,其後他得出了實數集不可數的結論。原先的證明用到了涉及區間套的複雜論證,而在他1891年的論文中,他以簡單而巧妙的對角論證法重新證明了這一結果。實數集的基數,記作c,代表連續統。
接着康托爾構作一個比一個大的集合,得出一個比一個大的基數,而這些巨大集合的元素已不可如實數般書寫出來。因此關於基數的一般理論,需要一個新的語言描述,這就是康托爾發明集合論的主因。
康托爾隨後提出連續統假設:c就是第二個超窮基數
,即継
之後最小的基數。現已知這假設是不能證明的,即接受或否定它會得出兩套不同但邏輯上可行的公理化集合论。
在非正式使用中,基数就是通常被称为计数的东西。它们同一于开始于
的自然数(就是
)。计数可以形式化地定义为有限基数,而无限基数只出现在高等数学和逻辑中。
更正式地,一個非零的数可以用于两个目的:描述一个集合的大小,或描述一个元素在序列中位置。对于有限集合和序列,可以轻易的看出着两个概念是相符的,因为对于所有描述在序列中的一个位置的数,我们可以构造一个有正好大小的集合,比如3描述了
在序列
中的位置,并且我们可以构造有三个元素的集合
。但是在处理无限集合的时候,在这两个概念之间的区别是本质的—这两个概念对于无限集合实际上是不同的。考虑位置的方面會引申出序数的概念,而大小則被这里描述的基数所廣義化。
在基数的形式定义背后的直觀想法是,可以构造一个記號來指明集合的相对大小,而不需理會它有哪些種類的成员。对于有限集合这是容易的:只需简单的數算一个集合的成员数目。为了比较更大集合的大小,得借助更加巧妙的概念。
一个集合
至少等大小于(或稱大于等于)一个集合
,如果有从
到
的一个单射(一一映射)。一一映射对集合
的每个元素确定了一个唯一的集合
的元素。通过例子就最易理解了;假设有集合
和
,我们可以注意到有一个映射:



这是一对一的,使用上述的大小概念,我們因此總結出
有大于等于
的势。注意元素
没有元素映射到它,但这是允许的,因为我们只要求一一映射,而不必须是一对一并且完全的映射。这个概念的好处是它可以扩展到无限集合。
我们可以把这个概念扩展到一个類似於等式的关系。两个集合
和
被称为有相同的"势",如果存在
和
之间的双射。通过Schroeder-Bernstein定理,这等价于有从
到
和从
到
的两个一一映射。我们接着記之为
。
的基数自身经常被定义为有着
的最小序数
。这叫做冯·诺伊曼基数指派;为使这个定义有意义,必须证明所有集合都有同某个序数一样的势;这个陈述就是良序原理。然而即使不給集合的勢指派一個名字,討論集合之間相對的勢還是可以的。
一個经典例子是无限旅馆悖论,也叫做希尔伯特旅馆悖论。假设你是有无限个房间的旅馆主人。旅馆客满,而又来了一个新客人。可以让在房间1的客人转移到房间2,房间2的客人转移到房间3,以此类推,腾空房间1的方式安置这个新客人。我们可以明确的写出这个映射的一个片段:



- ...

- ...
在这种方式下我们可以看出集合
和集合
有相同的势,因为已知这两个集合之间存在双射。这便給"无限集合"提供了一個合適的定義,即是與自身某個真子集有著相同的勢的任何集合;在上面的例子中
是
的真子集。
当我们考虑这些大对象的时候,我们还想看看计数次序的概念是否符合上述为无限集合定义的基数。事實上是不一致的;通过考虑上面的例子,我们可以看到如果有“比无限大一”的某个对象存在,它必须跟起初的无限集合有一样的势。這時候可以使用另一種稱為序数的形式概念,它是建基于计数并依次考虑每个数的想法上。而我们會发现,势和序(ordinality)的概念对于无限的情況是有分歧的。
可以证明实数的势大于刚才描述的自然数的势,透過对角论证法可以一目瞭然。跟势相關的经典问题(比如连续统假设)主要关注在某一对无限基数之间是否有別的基数。現時数学家已经在描述更大更大基数的性质。
因为基数是数学中如此常用的概念,有各种各样的名字指涉它。势相同有时也叫做等势、均势或等多(equipotence, equipollence, equinumerosity)。因此称有相同势的两个集合为等势的、均势的或等多的(equipotent, equipollent, equinumerous)。
首先,給出集合
和
,我們稱
的勢小於等於
,記作
,當且僅當存在由
到
的單射;稱
的勢與
相等,記作
, 當且僅當存在由
到
的雙射(即一一對應)。
康托尔-伯恩斯坦-施罗德定理指出如果
及
則
。
假設選擇公理,所有集合都可良序,且對於所有集合
與
,有
或
。因此,我們可以定義序數,而
集合
的基數則是與
等勢的最小序數
。
(若不接受選擇公理,我們也可對非良序集
定義基數,就是所有與
等勢的集的階中下确界。)
自然數的一種定義是
。可以見到,與數
等勢的集必有
個元素。如集合
的基数为
。
以下是有限集的三個等價定義:它與某自然數等勢;它只有一個等勢的序數,就是它的基數;它沒有等勢的真子集。
最小的無限集合是自然數集。
与
基数相同,因为可以让前一集合的
与后一集合的
一一对应。从这个例子可以看出,对于一个无穷集合来说,它可以和它的一个真子集有相同的基数。
以下是无限集的四個等價定義:它不與任何自然數等勢;它有超過一個等勢的序數;它有至少一个真子集和它等勢;存在由自然數集到它的單射。
我們可在基數上定義若干算術運算,這是對自然數運算的推廣。
給出集合
與
,定義
,則基數和是
。
若
與
不相交,則
。
基數積是

其中
是
和
的笛卡儿积。
基數指數是

其中
是所有由
到
的函數的集合。
在有限集時,這些運算與自然數無異。一般地,它們亦有普通算術運算的性質:
- 加法和乘法是可交換的,即
及 
- 加法和乘法符合結合律,
及 
- 分配律,即
。



無窮集合的加法及乘法(假設選擇公理)非常簡單。若
與
皆非空而其中之一為無限集,則

注意
是
的幂集之基數。由对角论证法可知
,是以並不存在最大的基數。事实上,基数的类是真类。
還有些關於指數的性質:
(特别地,
)。
,若
非空。
。
- 若
,則
。
- 若
和
俱有限且大於1,而
是無窮集,則
。
- 若X是無窮而
是有限及非空,則
。
對每一個基數,存在一個最小比它大的基數。這在自然數當然是對的。自然數集的基數是
,康托尔稱下一個為
,相类似的,还定义了如下一个序列:
。
设
。连续统假设猜想,就是
。
連續統假設是與一般集論公理(即Zermelo-Fraenkel公理系統加上選擇公理)是獨立的。
更一般的假設,即
。
广义连续统假设,就是對所有無窮基數
,都不存在介乎
與
之間的基數。
- Hahn, Hans, Infinity, Part IX, Chapter 2, Volume 3 of The World of Mathematics. New York: Simon and Schuster, 1956.
- Halmos, Paul, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
|
---|
可數集 |
- 自然数 (
)
- 整数 (
)
- 有理数 (
)
- 規矩數
- 代數數 (
)
- 周期
- 可計算數
- 可定义数
- 高斯整數 (
)
- 艾森斯坦整数
|
---|
合成代數 |
- 可除代數:实数 (
)
- 複數 (
)
- 四元數 (
)
- 八元数 (
)
|
---|
凯莱-迪克森结构 |
- 实数 (
)
- 複數 (
)
- 四元數 (
)
- 八元数 (
)
- 十六元數 (
)
- 三十二元數
- 六十四元數
- 一百二十八元數
- 二百五十六元數……
|
---|
分裂 形式 | |
---|
其他超複數 | |
---|
其他系統 | |
---|
|