數學物件(Mathematical object)是數學中的抽象概念。用數學的普通語言來說,對象是任何可以或已經用演繹推理數學證明正式定義的物件。一般地,一個數學物件可以是一個能代入變數的值,從而可以用於公式裡。 經常遇到的數學物件包括集合函數表示式幾何形狀、其他數學物件的轉換空間。數學物件可以非常複雜。比如說,定理證明甚至理論證明論中被視為數學物件。

四維超立方體的施萊格爾圖

數學物件的存在是數學哲學家進行大量研究和討論的對象。[1]

按分支分類的數學物件列表

編輯

參見

編輯

參考文獻

編輯
  1. ^ Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object: Strategies for Nominalistic Reconstrual of Mathematics. Oxford University Press. ISBN 0198236158
  • Azzouni, J., 1994. Metaphysical Myths, Mathematical Practice. Cambridge University Press.
  • Burgess, John, and Rosen, Gideon, 1997. A Subject with No Object. Oxford Univ. Press.
  • Davis, Philip and Reuben Hersh, 1999 [1981]. The Mathematical Experience. Mariner Books: 156–62.
  • Gold, Bonnie, and Simons, Roger A., 2011. Proof and Other Dilemmas: Mathematics and Philosophy頁面存檔備份,存於網際網路檔案館. Mathematical Association of America.
  • Hersh, Reuben, 1997. What is Mathematics, Really?  Oxford University Press.
  • Sfard, A., 2000, "Symbolizing mathematical reality into being,  Or how mathematical discourse and mathematical objects create each other," in Cobb, P., et al., Symbolizing and communicating in mathematics classrooms:  Perspectives on discourse, tools and instructional design. Lawrence Erlbaum.
  • Stewart Shapiro, 2000. Thinking about mathematics: The philosophy of mathematics.  Oxford University Press.

外部鏈接

編輯