自由粒子(波包 )的核子是[ 1]
K
(
x
,
x
′
;
t
)
=
1
2
π
∫
−
∞
+
∞
d
k
e
i
k
(
x
−
x
′
)
e
−
i
ℏ
k
2
t
/
(
2
m
)
=
(
m
2
π
i
ℏ
t
)
1
/
2
e
−
m
(
x
−
x
′
)
2
/
(
2
i
ℏ
t
)
.
{\displaystyle K(x,x';t)={\frac {1}{2\pi }}\int _{-\infty }^{+\infty }dk\,e^{ik(x-x')}e^{-i\hbar k^{2}t/(2m)}=\left({\frac {m}{2\pi i\hbar t}}\right)^{1/2}e^{-m(x-x')^{2}/(2i\hbar t)}~.}
量子谐振子 的Mehler核子 [ 2] [ 3] [ 4]
K
(
x
,
x
′
;
t
)
=
(
m
ω
2
π
i
ℏ
sin
ω
t
)
1
/
2
exp
(
−
m
ω
(
(
x
2
+
x
′
2
)
cos
ω
t
−
2
x
x
′
)
2
i
ℏ
sin
ω
t
)
.
{\displaystyle K(x,x';t)=\left({\frac {m\omega }{2\pi i\hbar \sin \omega t}}\right)^{1/2}\exp \left(-{\frac {m\omega ((x^{2}+x'^{2})\cos \omega t-2xx')}{2i\hbar \sin \omega t}}\right)~.}
通过泛函积分 ,核子等于
K
(
x
,
x
′
;
t
,
t
′
)
=
∫
D
x
(
t
)
exp
(
i
∫
t
t
′
L
(
x
,
x
˙
;
t
)
d
t
)
{\displaystyle K(x,x';t,t')=\int Dx(t)\ \exp(i\int _{t}^{t'}L(x,{\dot {x}};t)\ dt)}
x
(
t
)
=
x
,
x
(
t
′
)
=
x
′
{\displaystyle x(t)=x,\ x(t')=x'}
L是拉氏量 。
克戈场论(Klein-Gordon)的Feynman传播子
G
~
F
(
p
)
=
1
p
2
−
m
2
+
i
ϵ
.
{\displaystyle {\tilde {G}}_{F}(p)={\frac {1}{p^{2}-m^{2}+i\epsilon }}.}
据黄教授说,这是[ 5]
G
F
(
x
,
y
)
=
lim
ϵ
→
0
1
(
2
π
)
4
∫
d
4
p
e
−
i
p
(
x
−
y
)
p
2
−
m
2
+
i
ϵ
=
{
−
1
4
π
δ
(
s
)
+
m
8
π
s
H
1
(
1
)
(
m
s
)
if
s
≥
0
−
i
m
4
π
2
−
s
K
1
(
m
−
s
)
if
s
<
0.
{\displaystyle G_{\mathrm {F} }(x,y)=\lim _{\epsilon \to 0}{\frac {1}{(2\pi )^{4}}}\int d^{4}p\,{\frac {e^{-ip(x-y)}}{p^{2}-m^{2}+i\epsilon }}={\begin{cases}-{\dfrac {1}{4\pi }}\delta (s)+{\dfrac {m}{8\pi {\sqrt {s}}}}H_{1}^{(1)}(m{\sqrt {s}})&{\text{ if }}s\geq 0\\-{\dfrac {im}{4\pi ^{2}{\sqrt {-s}}}}K_{1}(m{\sqrt {-s}})&{\text{if}}s<0.\end{cases}}}
H是汉克尔函数 ,K是贝塞尔函数 ,δ是狄拉克δ函数 ,
s
2
=
x
μ
x
μ
{\displaystyle s^{2}=x^{\mu }x_{\mu }}
。
Feynman传播子使用下面的曲线积分 (contour integral,留数定理 )
Feynman传播子也等于下面的真空期望值 :
G
F
(
x
−
y
)
=
−
i
⟨
0
|
T
ϕ
(
x
)
ϕ
(
y
)
|
0
⟩
{\displaystyle G_{F}(x-y)=-i\langle 0|T\phi (x)\phi (y)|0\rangle }
=
−
i
⟨
0
|
θ
(
x
0
−
y
0
)
ϕ
(
x
)
ϕ
(
y
)
+
θ
(
y
0
−
x
0
)
ϕ
(
y
)
ϕ
(
x
)
|
0
⟩
{\displaystyle =-i\langle 0|\theta (x^{0}-y^{0})\phi (x)\phi (y)+\theta (y^{0}-x^{0})\phi (y)\phi (x)|0\rangle }
上面T是路径排序 算子,
θ
{\displaystyle \theta }
是单位阶跃函数 。
S
~
F
(
p
)
=
1
γ
μ
p
μ
−
m
+
i
ϵ
=
1
p
/
−
m
+
i
ϵ
.
{\displaystyle {\tilde {S}}_{F}(p)={1 \over \gamma ^{\mu }p_{\mu }-m+i\epsilon }={1 \over p\!\!\!/-m+i\epsilon }.}
S
F
(
x
−
y
)
=
∫
d
4
p
(
2
π
)
4
e
−
i
p
⋅
(
x
−
y
)
(
γ
μ
p
μ
+
m
)
p
2
−
m
2
+
i
ϵ
=
(
γ
μ
(
x
−
y
)
μ
|
x
−
y
|
5
+
m
|
x
−
y
|
3
)
J
1
(
m
|
x
−
y
|
)
.
{\displaystyle S_{F}(x-y)=\int {{d^{4}p \over (2\pi )^{4}}\,e^{-ip\cdot (x-y)}}\,{(\gamma ^{\mu }p_{\mu }+m) \over p^{2}-m^{2}+i\epsilon }=\left({\gamma ^{\mu }(x-y)_{\mu } \over |x-y|^{5}}+{m \over |x-y|^{3}}\right)J_{1}(m|x-y|).}
传播子也是格林函数
S
F
(
x
−
y
)
=
(
i
∂
/
+
m
)
G
F
(
x
−
y
)
{\displaystyle S_{F}(x-y)=(i\partial \!\!\!/+m)G_{F}(x-y)}
这描述费米子 、电子 。
光子 传播子是
−
i
g
μ
ν
p
2
+
i
ϵ
.
{\displaystyle {-ig^{\mu \nu } \over p^{2}+i\epsilon }.}
g
μ
ν
−
k
μ
k
ν
/
m
2
k
2
−
m
2
+
i
ϵ
+
k
μ
k
ν
/
m
2
k
2
−
m
2
/
λ
+
i
ϵ
.
{\displaystyle {\frac {g_{\mu \nu }-k_{\mu }k_{\nu }/m^{2}}{k^{2}-m^{2}+i\epsilon }}+{\frac {k_{\mu }k_{\nu }/m^{2}}{k^{2}-m^{2}/\lambda +i\epsilon }}.}
D
μ
ν
(
k
)
=
−
i
k
2
+
i
ϵ
(
g
μ
ν
−
(
1
−
ξ
)
k
μ
k
ν
k
2
)
{\displaystyle D_{\mu \nu }(k)={\frac {-i}{k^{2}+i\epsilon }}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}
也阅读FP鬼子 ,给予胶子 传播子或杨米尔斯传播子:
⟨
A
μ
a
(
x
)
A
ν
b
(
y
)
⟩
=
D
μ
ν
(
x
−
y
)
a
b
=
∫
d
4
k
(
2
π
)
4
−
i
e
−
i
k
(
x
−
y
)
k
2
+
i
ϵ
δ
a
b
(
g
μ
ν
−
(
1
−
ξ
)
k
μ
k
ν
k
2
)
{\displaystyle \langle A_{\mu }^{a}(x)A_{\nu }^{b}(y)\rangle =D_{\mu \nu }(x-y)^{ab}=\int {\frac {d^{4}k}{(2\pi )^{4}}}{\frac {-ie^{-ik(x-y)}}{k^{2}+i\epsilon }}\delta ^{ab}(g_{\mu \nu }-(1-\xi ){\frac {k_{\mu }k_{\nu }}{k^{2}}})}
选择
ξ
{\displaystyle \xi }
需要规范固定 。
重力子的传播子是[ 6] [ 7] [ 8]
G
a
b
c
d
(
k
)
=
g
a
c
g
b
d
+
g
b
c
g
a
d
−
g
a
b
g
c
d
k
2
{\displaystyle G_{abcd}(k)={\frac {g_{ac}g_{bd}+g_{bc}g_{ad}-g_{ab}g_{cd}}{k^{2}}}}