開羅五邊形鑲嵌
在幾何學中,開羅五邊形鑲嵌是一種平面鑲嵌,其為半正鑲嵌扭稜正方形鑲嵌的對偶鑲嵌[1],密鋪於歐氏平面,其名為「開羅」是因為這種幾何圖形經常在埃及開羅的街道上出現[2][3],是15種已知的等面五邊形鑲嵌之一。
類別 | 半正鑲嵌對偶 平面鑲嵌 | |
---|---|---|
對偶多面體 | 扭稜正方形鑲嵌 | |
數學表示法 | ||
考克斯特符號 | ||
施萊夫利符號 | dsr{6,3} | |
康威表示法 | dsrS | |
性質 | ||
二面角 | 平角 | |
組成與佈局 | ||
面的種類 | 五邊形 | |
面的佈局 | V3.3.4.3.4 | |
對稱性 | ||
對稱群 | p4g, [4+,4], (4*2) p4, [4,4]+, (442) | |
旋轉對稱群 | p4, [4,4]+, (442) | |
特性 | ||
面可遞 | ||
圖像 | ||
| ||
它也被稱為麥克馬洪網格(MacMahon's net)[5],出於珀西亞歷山大麥克馬洪1921年出版的《New Mathematical Pastimes》[6]。
在化學中
编辑五邊石墨烯的化學結構與開羅五邊形鑲嵌接近[7]這種形態建基於分析和模擬,在2014年被提出。[7]進一步的計算顯示純粹以此形態存在的碳是不穩定的,[8]但將其氫化後可變得穩定。[9]由於其結構,它罕見地具有負值蒲松比,強度相信比石墨烯高,且據預測它能在高達1000K時仍為化學穩定。[7]
參見
编辑參考文獻
编辑- ^ Weisstein, Eric W. (编). Dual tessellation. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
- ^ Alsina, Claudi; Nelsen, Roger B., Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions 42, Mathematical Association of America: 164, 2010 [2014-06-11], ISBN 978-0-88385-348-1, (原始内容存档于2014-07-05).
- ^ Martin, George Edward, Transformation Geometry: An Introduction to Symmetry, Undergraduate Texts in Mathematics, Springer: 119, 1982 [2014-06-11], ISBN 978-0-387-90636-2, (原始内容存档于2014-07-05).
- ^ Conway, John H.; Burgiel, Heidi; Goodman-Strass, Chaim, The Symmetries of Things, AK Peters: 288, 2008, ISBN 978-1-56881-220-5
- ^ Plane nets in crystal chemistry. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1980-02-29, 295 (1417): 553–618 [2020-05-04]. ISSN 0080-4614. doi:10.1098/rsta.1980.0150. (原始内容存档于2019-10-24) (英语).
- ^ Macmahon, Major P. A., New Mathematical Pastimes, University Press, 1921.
- ^ 7.0 7.1 7.2 Shunhong Zhang, Jian Zhou, Qian Wang, Xiaoshuang Chen, Yoshiyuki Kawazoe, Puru Jena. Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences. 2015-02-24, 112 (8): 2372–2377 [2020-05-04]. ISSN 0027-8424. PMC 4345574 . PMID 25646451. doi:10.1073/pnas.1416591112 (英语).
- ^ Christopher P. Ewels, Xavier Rocquefelte, Harold W. Kroto, Mark J. Rayson, Patrick R. Briddon, Malcolm I. Heggie. Predicting experimentally stable allotropes: Instability of penta-graphene. Proceedings of the National Academy of Sciences. 2015-12-22, 112 (51): 15609–15612 [2020-05-04]. ISSN 0027-8424. PMC 4697406 . PMID 26644554. doi:10.1073/pnas.1520402112 (英语).
- ^ Hamideh Einollahzadeh, Seyed Mahdi Fazeli, Reza Sabet Dariani. Studying the electronic and phononic structure of penta-graphane. Science and Technology of Advanced Materials. 2016-12, 17 (1): 610–617 [2020-05-04]. ISSN 1468-6996. PMC 5102001 . PMID 27877907. doi:10.1080/14686996.2016.1219970. (原始内容存档于2020-08-15) (英语).
延伸阅读
编辑- Grünbaum, Branko ; and Shephard, G. C. Tilings and Patterns. New York: W. H. Freeman. 1987. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p.58-65) (Page 480, Tilings by polygons, #24 of 24 polygonal isohedral types by pentagons)
- Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979: 38. ISBN 0-486-23729-X.
- Wells, David, The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 23, 1991.