歐拉恆等式
e ^ (πi) + 1 = 0
歐拉恆等式是指下列的關係式:
這條恆等式第一次出現於1748年,瑞士數學、物理學家萊昂哈德·歐拉(Leonhard Euler)在洛桑出版的書《无穷小分析引论》(Introductio in analysin infinitorum)。這是複分析的歐拉公式之特殊情況。
證明
编辑- (歐拉公式)
- (代入 )
- (因 和 )
與歐拉恆等式有關的文學作品
编辑《博士熱愛的算式》(博士の愛した数式),小川洋子著,臺灣版本由王蘊潔翻譯,二版,麥田出版社,2008年,ISBN 978-986-173-408-8。
参见
编辑參考文獻
编辑- Conway, John H., and Guy, Richard K. (1996), The Book of Numbers (页面存档备份,存于互联网档案馆), Springer ISBN 978-0-387-97993-9
- Crease, Robert P. (10 May 2004), "The greatest equations ever (页面存档备份,存于互联网档案馆)", Physics World [registration required]
- Dunham, William (1999), Euler: The Master of Us All, Mathematical Association of America ISBN 978-0-88385-328-3
- Euler, Leonhard (1922), Leonhardi Euleri opera omnia. 1, Opera mathematica. Volumen VIII, Leonhardi Euleri introductio in analysin infinitorum. Tomus primus (页面存档备份,存于互联网档案馆), Leipzig: B. G. Teubneri
- Kasner, E., and Newman, J. (1940), Mathematics and the Imagination, Simon & Schuster
- Maor, Eli (1998), e: The Story of a number, Princeton University Press ISBN 0-691-05854-7
- Nahin, Paul J. (2006), Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, Princeton University Press ISBN 978-0-691-11822-2
- Paulos, John Allen (1992), Beyond Numeracy: An Uncommon Dictionary of Mathematics, Penguin Books ISBN 0-14-014574-5
- Reid, Constance (various editions), From Zero to Infinity, Mathematical Association of America
- Sandifer, C. Edward (2007), Euler's Greatest Hits (页面存档备份,存于互联网档案馆), Mathematical Association of America ISBN 978-0-88385-563-8
- Stipp, David, A Most Elegant Equation: Euler's formula and the beauty of mathematics, Basic Books, 2017
- Wells, David (1990), "Are these the most beautiful?", The Mathematical Intelligencer, 12: 37–41, doi:10.1007/BF03024015
- Wilson, Robin, Euler's Pioneering Equation: The most beautiful theorem in mathematics, Oxford University Press, 2018
- Zeki, S.; Romaya, J. P.; Benincasa, D. M. T.; Atiyah, M. F., The experience of mathematical beauty and its neural correlates, Frontiers in Human Neuroscience, 2014, 8, doi:10.3389/fnhum.2014.00068