Trypanothione-dependent glyoxalase I in Trypanosoma cruzi
- PMID: 16958620
- PMCID: PMC1652828
- DOI: 10.1042/BJ20060882
Trypanothione-dependent glyoxalase I in Trypanosoma cruzi
Abstract
The glyoxalase system, comprizing glyoxalase I and glyoxalase II, is a ubiquitous pathway that detoxifies highly reactive aldehydes, such as methylglyoxal, using glutathione as a cofactor. Recent studies of Leishmania major glyoxalase I and Trypanosoma brucei glyoxalase II have revealed a unique dependence upon the trypanosomatid thiol trypanothione as a cofactor. This difference suggests that the trypanothione-dependent glyoxalase system may be an attractive target for rational drug design against the trypanosomatid parasites. Here we describe the cloning, expression and kinetic characterization of glyoxalase I from Trypanosoma cruzi. Like L. major glyoxalase I, recombinant T. cruzi glyoxalase I showed a preference for nickel as its metal cofactor. In contrast with the L. major enzyme, T. cruzi glyoxalase I was far less fast-idious in its choice of metal cofactor efficiently utilizing cobalt, manganese and zinc. T. cruzi glyoxalase I isomerized hemithio-acetal adducts of trypanothione more than 2400 times more efficiently than glutathione adducts, with the methylglyoxal adducts 2-3-fold better substrates than the equivalent phenylglyoxal adducts. However, glutathionylspermidine hemithioacetal adducts were most efficiently isomerized and the glutathionylspermidine-based inhibitor S-4-bromobenzylglutathionylspermidine was found to be a potent linear competitive inhibitor of the T. cruzi enzyme with a K(i) of 5.4+/-0.6 microM. Prediction algorithms, combined with subcellular fractionation, suggest that T. cruzi glyoxalase I localizes not only to the cytosol but also the mitochondria of T. cruzi epimastigotes. The contrasting substrate specificities of human and trypanosomatid glyoxalase enzymes, confirmed in the present study, suggest that the glyoxalase system may be an attractive target for anti-trypanosomal chemotherapy.
Figures






Similar articles
-
A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major.Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13186-91. doi: 10.1073/pnas.0402918101. Epub 2004 Aug 25. Proc Natl Acad Sci U S A. 2004. PMID: 15329410 Free PMC article.
-
Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.Mol Microbiol. 2006 Feb;59(4):1239-48. doi: 10.1111/j.1365-2958.2006.05022.x. Mol Microbiol. 2006. PMID: 16430697
-
Glyoxalase II of African trypanosomes is trypanothione-dependent.J Biol Chem. 2004 May 21;279(21):22209-17. doi: 10.1074/jbc.M401240200. Epub 2004 Feb 19. J Biol Chem. 2004. PMID: 14976196
-
Methylglyoxal metabolism in trypanosomes and leishmania.Semin Cell Dev Biol. 2011 May;22(3):271-7. doi: 10.1016/j.semcdb.2011.02.001. Epub 2011 Feb 15. Semin Cell Dev Biol. 2011. PMID: 21310261 Free PMC article. Review.
-
Glyoxalase pathway of trypanosomatid parasites: a promising chemotherapeutic target.Curr Drug Targets. 2008 Nov;9(11):957-65. doi: 10.2174/138945008786786082. Curr Drug Targets. 2008. PMID: 18991608 Review.
Cited by
-
Nonredox nickel enzymes.Chem Rev. 2014 Apr 23;114(8):4206-28. doi: 10.1021/cr4004488. Epub 2013 Dec 26. Chem Rev. 2014. PMID: 24369791 Free PMC article. Review.
-
Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum.J Biol Chem. 2011 Nov 4;286(44):38367-38374. doi: 10.1074/jbc.M111.251603. Epub 2011 Sep 13. J Biol Chem. 2011. PMID: 21914803 Free PMC article.
-
Glyoxalase I gene deletion mutants of Leishmania donovani exhibit reduced methylglyoxal detoxification.PLoS One. 2009 Aug 27;4(8):e6805. doi: 10.1371/journal.pone.0006805. PLoS One. 2009. PMID: 19710909 Free PMC article.
-
Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation.Antimicrob Agents Chemother. 2012 Jan;56(1):115-23. doi: 10.1128/AAC.05135-11. Epub 2011 Oct 28. Antimicrob Agents Chemother. 2012. PMID: 22037852 Free PMC article.
-
ATP-dependent ligases in trypanothione biosynthesis--kinetics of catalysis and inhibition by phosphinic acid pseudopeptides.FEBS J. 2008 Nov;275(21):5408-21. doi: 10.1111/j.1742-4658.2008.06670.x. FEBS J. 2008. PMID: 18959765 Free PMC article.
References
-
- World Health Organization. promoting healthy life. Geneva: World Health Organization; 2002. The World health report 2002: reducing risks. - PubMed
-
- Castro J. A., Diaz-de-Toranzo E. G. Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas' disease) Biomed. Environ. Sci. 1988;1:19–33. - PubMed
-
- El Sayed N. M., Myler P. J., Blandin G., Berriman M., Crabtree J., Aggarwal G., Caler E., Renauld H., Worthey E. A., Hertz-Fowler C., et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. - PubMed
-
- Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu. Rev. Microbiol. 1992;46:695–729. - PubMed
-
- Wyllie S., Cunningham M. L., Fairlamb A. H. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J. Biol. Chem. 2004;279:39925–39932. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases