Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Feb 28 2021 19:57:28
%S 1,1,6,45,464,6000,93528,1707111,35721216,843160671,22165100000,
%T 642268811184,20339749638144,698946255836933,25903663544572800,
%U 1029945249481640625,43733528272753917952,1975222567881226040760
%N a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,n-1].
%C The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
%H Seiichi Manyama, <a href="/A109516/b109516.txt">Table of n, a(n) for n = 1..387</a>
%F a(n+1) = [x^n] 1/(1 - n*x - n*x^2). - _Paul D. Hanna_, Dec 27 2012
%F a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*n^(n-k) for n>=0 (conjectured). - _Werner Schulte_, Oct 21 2016
%F a(n) = ((n + sqrt((n-1)*(n+3)) - 1)^n - (n - sqrt((n-1)*(n+3)) - 1)^n) / (2^n * sqrt((n-1)*(n+3))), for n > 1. - _Daniel Suteu_, Apr 20 2018
%F a(n) ~ n^(n-1). - _Vaclav Kotesovec_, Apr 20 2018
%F a(n+1) = (-sqrt(n)*i)^n * S(n, sqrt(n)*i) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind. - _Seiichi Manyama_, Feb 28 2021
%e a(4)=45 because if M is the 2 X 2 matrix [0,1;3,3], then M^4 is the 2 X 2 matrix [36,45;135;171].
%e G.f. = x + x^2 + 6*x^3 + 45*x^4 + 464*x^5 + 6000*x^6 + 93528*x^7 + 1707111*x^8 + ...
%p with(linalg): a:=proc(n) local A,k: A[1]:=matrix(2,2,[0,1,n-1,n-1]): for k from 2 to n do A[k]:=multiply(A[k-1],A[1]) od: A[n][1,2] end: seq(a(n),n=1..20);
%t M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, n - 1}}, n], {{0, 1}, {1, 1}}]; a = Table[M[n][[1, 2]], {n, 1, 50}]
%t Table[SeriesCoefficient[1/(1 - n*x - n*x^2), {x,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Apr 20 2018 *)
%o (PARI) {a(n)=polcoeff(1/(1-n*x-n*x^2+x*O(x^n)), n)} \\ _Paul D. Hanna_, Dec 27 2012
%o (PARI) a(n) = ([0,1;n-1,n-1]^n)[1, 2]; \\ _Michel Marcus_, Apr 20 2018
%o (PARI) a(n) = round((-sqrt(n-1)*I)^(n-1)*polchebyshev(n-1, 2, sqrt(n-1)*I/2)); \\ _Seiichi Manyama_, Feb 28 2021
%Y Cf. A000045, A000166, A109519.
%K nonn
%O 1,3
%A _Roger L. Bagula_, Jun 16 2005