login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109516
a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,n-1].
4
1, 1, 6, 45, 464, 6000, 93528, 1707111, 35721216, 843160671, 22165100000, 642268811184, 20339749638144, 698946255836933, 25903663544572800, 1029945249481640625, 43733528272753917952, 1975222567881226040760
OFFSET
1,3
COMMENTS
The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
LINKS
FORMULA
a(n+1) = [x^n] 1/(1 - n*x - n*x^2). - Paul D. Hanna, Dec 27 2012
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*n^(n-k) for n>=0 (conjectured). - Werner Schulte, Oct 21 2016
a(n) = ((n + sqrt((n-1)*(n+3)) - 1)^n - (n - sqrt((n-1)*(n+3)) - 1)^n) / (2^n * sqrt((n-1)*(n+3))), for n > 1. - Daniel Suteu, Apr 20 2018
a(n) ~ n^(n-1). - Vaclav Kotesovec, Apr 20 2018
a(n+1) = (-sqrt(n)*i)^n * S(n, sqrt(n)*i) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind. - Seiichi Manyama, Feb 28 2021
EXAMPLE
a(4)=45 because if M is the 2 X 2 matrix [0,1;3,3], then M^4 is the 2 X 2 matrix [36,45;135;171].
G.f. = x + x^2 + 6*x^3 + 45*x^4 + 464*x^5 + 6000*x^6 + 93528*x^7 + 1707111*x^8 + ...
MAPLE
with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, 1, n-1, n-1]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..20);
MATHEMATICA
M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, n - 1}}, n], {{0, 1}, {1, 1}}]; a = Table[M[n][[1, 2]], {n, 1, 50}]
Table[SeriesCoefficient[1/(1 - n*x - n*x^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 20 2018 *)
PROG
(PARI) {a(n)=polcoeff(1/(1-n*x-n*x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012
(PARI) a(n) = ([0, 1; n-1, n-1]^n)[1, 2]; \\ Michel Marcus, Apr 20 2018
(PARI) a(n) = round((-sqrt(n-1)*I)^(n-1)*polchebyshev(n-1, 2, sqrt(n-1)*I/2)); \\ Seiichi Manyama, Feb 28 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 16 2005
STATUS
approved