Session: Internet Economics & Monetization 1
* Machine Learning in an Auction Environment
Patrick Hummel & R. Preston McAfee (Google Inc.)
* Optimal Revenue-Sharing Double Auctions with Applications to Ad Exchanges
Renato Gomes (Toulouse School of Economics) & Vahab Mirrokni (Google Research)
Session: The Future
* Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity
Tien T. Nguyen, Pik-Mai Hui, F. Maxwell Harper, Loren Terveen, & Joseph A. Konstan(University of Minnesota)
Session: Internet Economics & Monetization 1
* Machine Learning in an Auction Environment
Patrick Hummel & R. Preston McAfee (Google Inc.)
* Optimal Revenue-Sharing Double Auctions with Applications to Ad Exchanges
Renato Gomes (Toulouse School of Economics) & Vahab Mirrokni (Google Research)
Session: The Future
* Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity
Tien T. Nguyen, Pik-Mai Hui, F. Maxwell Harper, Loren Terveen, & Joseph A. Konstan(University of Minnesota)
This document summarizes context-aware recommendation and factorization machines. It discusses how factorization machines improve on traditional matrix factorization models by incorporating additional context features. It also introduces gradient boosting factorization machines which further enhance factorization machines by optimizing the factorization model with gradient boosting algorithms.
This document summarizes research on using structured event representations extracted from news articles to predict stock price movements. Key points include:
- Events are extracted from articles and represented as tuples of actors, actions, and objects to capture the who, what, when of events.
- A deep neural network model is used to predict stock price changes based on extracted event representations.
- The model achieves better performance than baselines that use bag-of-words representations of articles.
17. 実際にInfer.NETを使っている論文
Z. Zhu, W. Chen, T. Minka, C. Zhu and Z. Chen: A novel
click model and its application to online advertising,
WSDM 2010
一番最初に例としてあげた、広告のクリックされる確率を表す
ためのモデルを作成
モデルの推論をInfer.NETを用いて行った
以降この論文について紹介を行います
ちなみに、このようなネット広告に機械学習や情報検索の技
術を応用する取り組みは近年盛んになっている
参考: Introduction to Computational Advertising
http://www.stanford.edu/class/msande239/
17
18. 既存研究
位置バイアスとその他のバイアス(時間帯、 ブラウザ)を分け
て考えている
位置バイアス
ユーザが上から下へ見ていくという知見をうまくモデル化
An experimental comparison of click position-bias models, WSDM
2008
Click chain model in web search, WWW 2009
その他のバイアス
各要因の重みをロジスティック回帰、プロビット回帰などで推定
Predicting clicks: estimating the click-through rate for new ads,
WWW 2007
Web-scale Bayesian click-through rate prediction for sponsored
search advertising in Microsoft’s Bing search engine, ICML 2010
18
19. 紹介論文の成果
General Click Model (GCM)というモデルを提案
GCMはOuter modelとInner modelの二つによって構成さ
れる
Outer model
ユーザが上から順に見ていくことを表したモデル
Inner model
Outer modelの状態遷移確率を時間帯やブラウザなどのデモ
グラフィック情報により説明するモデル
19