SlideShare a Scribd company logo
ソーシャルグラフ分析
•                  (   )

    •   @kimuras

•                          G(2007   )

•
    •
•
Agenda

• Introduction
• The past work
• Introduction to GraphDB
• Introduction to Neo4j
• Introduction to analysis sample
Introduction
Motivation for social graph analysis
mixi
                 30000000

                                   ID
                 22500000
# of member id




                 15000000



                  7500000



                        0
                            2007        2008   2009   2010   2011
                                               year
What is Social Graph?
ソーシャルグラフ分析
ソーシャルグラフ分析
ソーシャルグラフ分析
ソーシャルグラフ分析
ソーシャルグラフ分析
ソーシャルグラフ分析
ソーシャルグラフ分析
Feed Back
Feed Back
Feed Back
Feed Back
Feed Back
Approach for SG
    analysis


       Feed Back
The past work
•
•
Relational Databases

                                        Dump &
                                        Denormalization




from_id    to_id    id   name     age                     Key      value

1          2        1    Kimura   18                      From:1   2,3

1          3        2    kato     45                      From:2   3

2          3        3    ito      21                      Prof:1   Kimura,18
                                                          Prof:2   Kato,45
Relational Databases

                                        Dump &

                   reimplementation     Denormalization




from_id    to_id    id   name     age                     Key      value

1
1
           2
           3
                   maintenance cost
                    1
                    2
                         Kimura
                         kato
                                  18
                                  45
                                                          From:1
                                                          From:2
                                                                   2,3
                                                                   3

2          3        3    ito      21                      Prof:1   Kimuras,18
                                                          Prof:2   Kato,45

                               scalability
Introduction to GraphDB
What is graph
What is graph
 Vertex (node :   )
What is graph
         Vertex (node :   )




Edge (     )
What is graph
         Vertex (node :   )


          Undirected graph (   )

Edge (     )
What is graph
         Vertex (node :   )




Edge (     )
What is graph
         Vertex (node :   )




Edge (     )
What is graph
         Vertex (node :   )




Edge (     )
What is graph
         Vertex (node :     )


               Directed graph (   )

Edge (     )
What is GraphDB
         Vertex (node :   )




Edge (     )
What is GraphDB
ID:   1
               Vertex (node :   )
NAME: kimura
PROP: Male
AGE: 18




Edge (           )
What is GraphDB
ID:   1
               Vertex (node :       )
NAME: kimura
PROP: Male
AGE: 18




Edge (           )
                     ID:   2
                     NAME: ITO
                     PROP: Female
                     AGE: 21
What is GraphDB
ID:   1
               Vertex (node :       )
NAME: kimura
PROP: Male
AGE: 18




Edge (           )
                     ID:   2
                     NAME: ITO
                     PROP: Female
                     AGE: 21
What is GraphDB
ID:   1
               Vertex (node :       )
NAME: kimura
PROP: Male
AGE: 18




Edge (           )
                     ID:   2
                     NAME: ITO
                     PROP: Female
                     AGE: 21
What is GraphDB
ID:   1
                       Vertex (node :       )
NAME: kimura
PROP: Male
AGE: 18




 Edge (                  )
                             ID:   2
ID:       3                  NAME: ITO
LABEL:    Like               PROP: Female
Since:    2011/08/06         AGE: 21
OutGoing: 2
What is GraphDB
ID:   1
                       Vertex (node :       )
NAME: kimura
PROP: Male
AGE: 18




 Edge (                  )
                             ID:   2
ID:       3                  NAME: ITO
LABEL:    Like               PROP: Female
Since:    2011/08/06         AGE: 21
OutGoing: 2
What is GraphDB
ID:   1
                       Vertex (node :       )
NAME: kimura
PROP: Male
AGE: 18




 Edge (                  )
                             ID:   2
ID:       3                  NAME: ITO
LABEL:    Like               PROP: Female
Since:    2011/08/06         AGE: 21
OutGoing: 2
The implementations
   for GraphDB




  http://en.wikipedia.org/wiki/GraphDB
Introduction to Neo4j
GraphDB Neo4j
       •     True ACID transactions
       •     High availability
       •     Scales to billions of nods and relationships
       •     High speed querying through traversals


               Single instance(GPLv3)   Multiple instance(AGPLv3)
Embedded       EmbeddedGraphDatabase    HighlyAvailableGraphDatabase
Standalone     Neo4j Server             Neo4j Server high availability mode


                                                   http://neo4j.org/
Other my favorite features
       for Neo4j
• RESTful APIs
• Query Language(Cypher)
• Full indexing
   – lucene
• Implemented graph algorithm
 – A*, Dijkstra
 – High speed traverse
• Gremlin supported
 – Like a query language

                         http://www.tinkerpop.com/post/4633229547/tinkerpop-graph-stack
Introduction simple Neo4j usecase
           Single node           Multi node
Embedded



           Analyses system       Analyses system




           Analyses system       Analyses system
Server
Introduction simple Neo4j usecase
           Single node           Multi node
Embedded



           Analyses system       Analyses system




           Analyses system       Analyses system
Server
Introduction simple Neo4j usecase
              Single node          Multi node
           Analyses system
Embedded



                                   Analyses system




             Analyses system       Analyses system
Server
Introduction simple Neo4j usecase
              Single node          Multi node
           Analyses system
Embedded



                                   Analyses system




             Analyses system       Analyses system
Server
Introduction to simple
   embedded Neo4j

• Insert Vertices & make Relationships
 • Single node & Embedded
• Traversal sample
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {
        GraphDatabaseService graphDb = new
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
            firstNode.setProperty("Name", "Kimura");
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {
            tx.finish();
        }
        graphDb.shutdown();
    }
}
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {
        GraphDatabaseService graphDb = new
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
            firstNode.setProperty("Name", "Kimura");
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {
            tx.finish();
        }
        graphDb.shutdown();
    }
}
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {            ID:   1
        GraphDatabaseService graphDb = new                    NAME: kimura
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
            firstNode.setProperty("Name", "Kimura");
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {
            tx.finish();
        }
        graphDb.shutdown();
    }
}
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {            ID:   1
        GraphDatabaseService graphDb = new                    NAME: kimura
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
            firstNode.setProperty("Name", "Kimura");
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {
            tx.finish();
        }
        graphDb.shutdown();
    }
}
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {            ID:   1
        GraphDatabaseService graphDb = new                    NAME: kimura
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
            firstNode.setProperty("Name", "Kimura");
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {                                           ID:   2
            tx.finish();                                      NAME: Kato
        }
        graphDb.shutdown();
    }
}
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {            ID:   1
        GraphDatabaseService graphDb = new                    NAME: kimura
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
            firstNode.setProperty("Name", "Kimura");
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {                                           ID:   2
            tx.finish();                                      NAME: Kato
        }
        graphDb.shutdown();
    }
}
Insert vertices,
                   make relationship
public final class InputVertex {
    public static void main(final String[] args) {                             ID:   1
        GraphDatabaseService graphDb = new                                     NAME: kimura
                       EmbeddedGraphDatabase("/tmp/neo4j");
        Transaction tx = graphDb.beginTx();
        try {
            Node firstNode = graphDb.createNode();
                                                              ID:       3
            firstNode.setProperty("Name", "Kimura");          Relation: Like
            Node secondNode = graphDb.createNode();
            secondNode.setProperty("Name", "Kato");
            firstNode.createRelationshipTo(secondNode,
                 DynamicRelationshipType.withName("LIKE"));
            tx.success();
        } finally {                                                            ID:   2
            tx.finish();                                                       NAME: Kato
        }
        graphDb.shutdown();
    }
}
Batch Insert
     • Non thread safe, non transaction
     • But very fast!
public final class Batch {
    public static void main(final String[] args) {
        BatchInserter inserter = new BatchInserterImpl("/tmp/neo4j",
                BatchInserterImpl.loadProperties("/tmp/neo4j.props"));
        Map<String, Object> prop = new HashMap<String, Object>();
        prop.put("Name", "Kimura");
        prop.put("Age", 21);
        long node1 = inserter.createNode(prop);

        prop.put("Name", "Kato");
        prop.put("Age", 21);
        long node2 = inserter.createNode(prop);
        inserter.createRelationship(node1, node2,
                DynamicRelationshipType.withName("LIKE"), null);
        inserter.shutdown();
    }
}
Traversal sample
    •
public static void main(final String[] args) {
        GraphDatabaseService graphDB = new EmbeddedGraphDatabase(args[0]);
        Node node = graphDB.getNodeById(1);
        Traverser friends = node.traverse(
          //
          Order.DEPTH_FIRST,   BREADTH_FIRST
          //
          StopEvaluator.END_OF_GRAPH,   DEPTH_ONE
          //
          ReturnableEvaluator.ALL_BUT_START_NODE,     ALL, isReturnableNode()
          //
          DynamicRelationshipType.withName("LIKE"),
          //
          Direction.OUTGOING);   INCOMING, BOTH
        for (Node nodeBuf : friends) {
            TraversalPosition currentPosition = friends.currentPosition();
        }
   }
Traversal sample
    Order.BREADTH_FIRST
•
Traversal sample
    Order.BREADTH_FIRST
•
Traversal sample
    Order.BREADTH_FIRST
•
Traversal sample
    Order.BREADTH_FIRST
•
Traversal sample
    Order.BREADTH_FIRST
•
Traversal sample
    Order.BREADTH_FIRST
•
Traversal sample
    Order.DEPTH_FIRST
•
Traversal sample
    Order.DEPTH_FIRST
•
Traversal sample
    Order.DEPTH_FIRST
•
Traversal sample
    Order.DEPTH_FIRST
•
Traversal sample
    Order.DEPTH_FIRST
•
Traversal sample
    Order.DEPTH_FIRST
•
Neoclipse sample




       http://wiki.neo4j.org/content/Neoclipse
experiment
•   mixi             Neo4j

•
    •   Machine: 24 core CPU, Memory 65GB

    •   Neo4j: BatchInsert, community, embedded

•   Data

    •                1500                    6

                   513m17sec (about 8.6h)
Network Dataset
•   Stanford Large Network Dataset Collection

    •    SNAP has a Wide variety of graph data!
             Social Networks             Communication networks

            Citation networks             Collaboration networks

               Web graphs             Product co-purchasing networks

     Internet peer-to-peer networks           Road networks

        Autonomous systems graphs            Signed networks

    Wikipedia networks and metadata      Memetracker and Twitter


                            http://snap.stanford.edu/data/index.html
Introduction to Analysis
        Sample
Architecture

   Service
                  Database   Analysis   Visualization
(Social Graph)
Introduction Analyses
          Sample


• Centrality (       )

• Clustering coefficient (   )
Centrality (       )

•       =


            Pagerank
•
•   =   Vertex   (   )
•
•   =   Vertex       (   )



    1            1



                 1
•
•   =       Vertex        (   )


              2
    1                 1


        2
                      1
                  2
•
•   =       Vertex        (   )


              2
    1                 1


        2
                      1
                  2
•
•   =       Vertex        (   )


              2
    1                 1
                  4
        2
                      1
                  2
•
•   =       Vertex        (   )


              2
    1                 1
                  4
        2
                      1
                  2
mixi

 •     1000

 •             summary


Min      1st Que. Median     Mean    3rd Que.    Max

1.00          3.00   10.00   25.69    30.00     903.00
•
    •   ≒
•
    •   ≒
            =0/3=0
•
    •   ≒
            =0/3=0


            =1/3
•
    •   ≒
            =0/3=0


            =1/3


            =2/3
•
    •   ≒
            =0/3=0


            =1/3


            =2/3


            =3/3=1
•   1000

•                     summary


Min        1st Que. Median   Mean     3rd Que.   Max

0.00        0.00    0.1157   0.2071    0.2667    1.000
ソーシャルグラフ分析
ソーシャルグラフ分析
•   25   0.08
•   14   0.17
•   10   0.68
•   4   1
Visualization Sample
•          2hop      Social Graph


•   Edge


    •                              (              )


•   Vertex


    •                       (                 )


•                 Gephi
                          http://gephi.org/
ソーシャルグラフ分析
•   Social Graph

    •
•   GraphDB

•   Neo4j

•   R

•   Visualization
Thanks!

More Related Content

Similar to ソーシャルグラフ分析 (20)

Better DSL Support for Groovy-Eclipse
Better DSL Support for Groovy-EclipseBetter DSL Support for Groovy-Eclipse
Better DSL Support for Groovy-Eclipse
Andrew Eisenberg
 
Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™
Databricks
 
Challenging Web-Scale Graph Analytics with Apache Spark with Xiangrui Meng
Challenging Web-Scale Graph Analytics with Apache Spark with Xiangrui MengChallenging Web-Scale Graph Analytics with Apache Spark with Xiangrui Meng
Challenging Web-Scale Graph Analytics with Apache Spark with Xiangrui Meng
Databricks
 
Challenging Web-Scale Graph Analytics with Apache Spark
Challenging Web-Scale Graph Analytics with Apache SparkChallenging Web-Scale Graph Analytics with Apache Spark
Challenging Web-Scale Graph Analytics with Apache Spark
Databricks
 
The InfoGrid Graph DataBase
The InfoGrid Graph DataBaseThe InfoGrid Graph DataBase
The InfoGrid Graph DataBase
InfoGrid.org
 
Processing Large Graphs
Processing Large GraphsProcessing Large Graphs
Processing Large Graphs
Nishant Gandhi
 
Odessapy2013 - Graph databases and Python
Odessapy2013 - Graph databases and PythonOdessapy2013 - Graph databases and Python
Odessapy2013 - Graph databases and Python
Max Klymyshyn
 
Triton and symbolic execution on gdb
Triton and symbolic execution on gdbTriton and symbolic execution on gdb
Triton and symbolic execution on gdb
Wei-Bo Chen
 
BUILDING WHILE FLYING
BUILDING WHILE FLYINGBUILDING WHILE FLYING
BUILDING WHILE FLYING
Kamal Shannak
 
Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™
Databricks
 
Designing an Objective-C Framework about 3D
Designing an Objective-C Framework about 3DDesigning an Objective-C Framework about 3D
Designing an Objective-C Framework about 3D
rsebbe
 
Fosdem 2011 - A Common Graph Database Access Layer for .Net and Mono
Fosdem 2011 - A Common Graph Database Access Layer for .Net and MonoFosdem 2011 - A Common Graph Database Access Layer for .Net and Mono
Fosdem 2011 - A Common Graph Database Access Layer for .Net and Mono
Achim Friedland
 
Scaling into Billions of Nodes and Relationships with Neo4j Graph Data Science
Scaling into Billions of Nodes and Relationships with Neo4j Graph Data ScienceScaling into Billions of Nodes and Relationships with Neo4j Graph Data Science
Scaling into Billions of Nodes and Relationships with Neo4j Graph Data Science
Neo4j
 
HBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgentHBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgent
HBaseCon
 
Graph technology meetup slides
Graph technology meetup slidesGraph technology meetup slides
Graph technology meetup slides
Sean Mulvehill
 
High-Performance Graph Analysis and Modeling
High-Performance Graph Analysis and ModelingHigh-Performance Graph Analysis and Modeling
High-Performance Graph Analysis and Modeling
Nesreen K. Ahmed
 
Neo4j: Graph-like power
Neo4j: Graph-like powerNeo4j: Graph-like power
Neo4j: Graph-like power
Roman Rodomansky
 
MongoDB, Hadoop and humongous data - MongoSV 2012
MongoDB, Hadoop and humongous data - MongoSV 2012MongoDB, Hadoop and humongous data - MongoSV 2012
MongoDB, Hadoop and humongous data - MongoSV 2012
Steven Francia
 
Triton and Symbolic execution on GDB@DEF CON China
Triton and Symbolic execution on GDB@DEF CON ChinaTriton and Symbolic execution on GDB@DEF CON China
Triton and Symbolic execution on GDB@DEF CON China
Wei-Bo Chen
 
MathWorks Interview Lecture
MathWorks Interview LectureMathWorks Interview Lecture
MathWorks Interview Lecture
John Yates
 
Better DSL Support for Groovy-Eclipse
Better DSL Support for Groovy-EclipseBetter DSL Support for Groovy-Eclipse
Better DSL Support for Groovy-Eclipse
Andrew Eisenberg
 
Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™
Databricks
 
Challenging Web-Scale Graph Analytics with Apache Spark with Xiangrui Meng
Challenging Web-Scale Graph Analytics with Apache Spark with Xiangrui MengChallenging Web-Scale Graph Analytics with Apache Spark with Xiangrui Meng
Challenging Web-Scale Graph Analytics with Apache Spark with Xiangrui Meng
Databricks
 
Challenging Web-Scale Graph Analytics with Apache Spark
Challenging Web-Scale Graph Analytics with Apache SparkChallenging Web-Scale Graph Analytics with Apache Spark
Challenging Web-Scale Graph Analytics with Apache Spark
Databricks
 
The InfoGrid Graph DataBase
The InfoGrid Graph DataBaseThe InfoGrid Graph DataBase
The InfoGrid Graph DataBase
InfoGrid.org
 
Processing Large Graphs
Processing Large GraphsProcessing Large Graphs
Processing Large Graphs
Nishant Gandhi
 
Odessapy2013 - Graph databases and Python
Odessapy2013 - Graph databases and PythonOdessapy2013 - Graph databases and Python
Odessapy2013 - Graph databases and Python
Max Klymyshyn
 
Triton and symbolic execution on gdb
Triton and symbolic execution on gdbTriton and symbolic execution on gdb
Triton and symbolic execution on gdb
Wei-Bo Chen
 
BUILDING WHILE FLYING
BUILDING WHILE FLYINGBUILDING WHILE FLYING
BUILDING WHILE FLYING
Kamal Shannak
 
Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™Web-Scale Graph Analytics with Apache® Spark™
Web-Scale Graph Analytics with Apache® Spark™
Databricks
 
Designing an Objective-C Framework about 3D
Designing an Objective-C Framework about 3DDesigning an Objective-C Framework about 3D
Designing an Objective-C Framework about 3D
rsebbe
 
Fosdem 2011 - A Common Graph Database Access Layer for .Net and Mono
Fosdem 2011 - A Common Graph Database Access Layer for .Net and MonoFosdem 2011 - A Common Graph Database Access Layer for .Net and Mono
Fosdem 2011 - A Common Graph Database Access Layer for .Net and Mono
Achim Friedland
 
Scaling into Billions of Nodes and Relationships with Neo4j Graph Data Science
Scaling into Billions of Nodes and Relationships with Neo4j Graph Data ScienceScaling into Billions of Nodes and Relationships with Neo4j Graph Data Science
Scaling into Billions of Nodes and Relationships with Neo4j Graph Data Science
Neo4j
 
HBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgentHBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgent
HBaseCon
 
Graph technology meetup slides
Graph technology meetup slidesGraph technology meetup slides
Graph technology meetup slides
Sean Mulvehill
 
High-Performance Graph Analysis and Modeling
High-Performance Graph Analysis and ModelingHigh-Performance Graph Analysis and Modeling
High-Performance Graph Analysis and Modeling
Nesreen K. Ahmed
 
MongoDB, Hadoop and humongous data - MongoSV 2012
MongoDB, Hadoop and humongous data - MongoSV 2012MongoDB, Hadoop and humongous data - MongoSV 2012
MongoDB, Hadoop and humongous data - MongoSV 2012
Steven Francia
 
Triton and Symbolic execution on GDB@DEF CON China
Triton and Symbolic execution on GDB@DEF CON ChinaTriton and Symbolic execution on GDB@DEF CON China
Triton and Symbolic execution on GDB@DEF CON China
Wei-Bo Chen
 
MathWorks Interview Lecture
MathWorks Interview LectureMathWorks Interview Lecture
MathWorks Interview Lecture
John Yates
 

Recently uploaded (20)

Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
Reducing Bugs With Static Code Analysis php tek 2025
Reducing Bugs With Static Code Analysis php tek 2025Reducing Bugs With Static Code Analysis php tek 2025
Reducing Bugs With Static Code Analysis php tek 2025
Scott Keck-Warren
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Content and eLearning Standards: Finding the Best Fit for Your-Training
Content and eLearning Standards: Finding the Best Fit for Your-TrainingContent and eLearning Standards: Finding the Best Fit for Your-Training
Content and eLearning Standards: Finding the Best Fit for Your-Training
Rustici Software
 
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 ProfessioMaster tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Kari Kakkonen
 
What is DePIN? The Hottest Trend in Web3 Right Now!
What is DePIN? The Hottest Trend in Web3 Right Now!What is DePIN? The Hottest Trend in Web3 Right Now!
What is DePIN? The Hottest Trend in Web3 Right Now!
cryptouniversityoffi
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4
Razin Mustafiz
 
cloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mitacloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mita
siyaldhande02
 
Security Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk CertificateSecurity Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk Certificate
VICTOR MAESTRE RAMIREZ
 
Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025
Splunk
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptxFrom Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
Mohammad Jomaa
 
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
SOFTTECHHUB
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
What’s New in Web3 Development Trends to Watch in 2025.pptx
What’s New in Web3 Development Trends to Watch in 2025.pptxWhat’s New in Web3 Development Trends to Watch in 2025.pptx
What’s New in Web3 Development Trends to Watch in 2025.pptx
Lisa ward
 
Optimize IBM i with Consulting Services Help
Optimize IBM i with Consulting Services HelpOptimize IBM i with Consulting Services Help
Optimize IBM i with Consulting Services Help
Alice Gray
 
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AISAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
Peter Spielvogel
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AI Emotional Actors:  “When Machines Learn to Feel and Perform"AI Emotional Actors:  “When Machines Learn to Feel and Perform"
AI Emotional Actors: “When Machines Learn to Feel and Perform"
AkashKumar809858
 
Reducing Bugs With Static Code Analysis php tek 2025
Reducing Bugs With Static Code Analysis php tek 2025Reducing Bugs With Static Code Analysis php tek 2025
Reducing Bugs With Static Code Analysis php tek 2025
Scott Keck-Warren
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Content and eLearning Standards: Finding the Best Fit for Your-Training
Content and eLearning Standards: Finding the Best Fit for Your-TrainingContent and eLearning Standards: Finding the Best Fit for Your-Training
Content and eLearning Standards: Finding the Best Fit for Your-Training
Rustici Software
 
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 ProfessioMaster tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Kari Kakkonen
 
What is DePIN? The Hottest Trend in Web3 Right Now!
What is DePIN? The Hottest Trend in Web3 Right Now!What is DePIN? The Hottest Trend in Web3 Right Now!
What is DePIN? The Hottest Trend in Web3 Right Now!
cryptouniversityoffi
 
UiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build PipelinesUiPath Community Zurich: Release Management and Build Pipelines
UiPath Community Zurich: Release Management and Build Pipelines
UiPathCommunity
 
System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4
Razin Mustafiz
 
cloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mitacloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mita
siyaldhande02
 
Security Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk CertificateSecurity Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk Certificate
VICTOR MAESTRE RAMIREZ
 
Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025
Splunk
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptxFrom Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
Mohammad Jomaa
 
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
SOFTTECHHUB
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
What’s New in Web3 Development Trends to Watch in 2025.pptx
What’s New in Web3 Development Trends to Watch in 2025.pptxWhat’s New in Web3 Development Trends to Watch in 2025.pptx
What’s New in Web3 Development Trends to Watch in 2025.pptx
Lisa ward
 
Optimize IBM i with Consulting Services Help
Optimize IBM i with Consulting Services HelpOptimize IBM i with Consulting Services Help
Optimize IBM i with Consulting Services Help
Alice Gray
 
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AISAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
Peter Spielvogel
 

ソーシャルグラフ分析

  • 2. ( ) • @kimuras • G(2007 ) • • •
  • 3. Agenda • Introduction • The past work • Introduction to GraphDB • Introduction to Neo4j • Introduction to analysis sample
  • 5. Motivation for social graph analysis
  • 6. mixi 30000000 ID 22500000 # of member id 15000000 7500000 0 2007 2008 2009 2010 2011 year
  • 7. What is Social Graph?
  • 20. Approach for SG analysis Feed Back
  • 23. Relational Databases Dump & Denormalization from_id to_id id name age Key value 1 2 1 Kimura 18 From:1 2,3 1 3 2 kato 45 From:2 3 2 3 3 ito 21 Prof:1 Kimura,18 Prof:2 Kato,45
  • 24. Relational Databases Dump & reimplementation Denormalization from_id to_id id name age Key value 1 1 2 3 maintenance cost 1 2 Kimura kato 18 45 From:1 From:2 2,3 3 2 3 3 ito 21 Prof:1 Kimuras,18 Prof:2 Kato,45 scalability
  • 27. What is graph Vertex (node : )
  • 28. What is graph Vertex (node : ) Edge ( )
  • 29. What is graph Vertex (node : ) Undirected graph ( ) Edge ( )
  • 30. What is graph Vertex (node : ) Edge ( )
  • 31. What is graph Vertex (node : ) Edge ( )
  • 32. What is graph Vertex (node : ) Edge ( )
  • 33. What is graph Vertex (node : ) Directed graph ( ) Edge ( )
  • 34. What is GraphDB Vertex (node : ) Edge ( )
  • 35. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( )
  • 36. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( ) ID: 2 NAME: ITO PROP: Female AGE: 21
  • 37. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( ) ID: 2 NAME: ITO PROP: Female AGE: 21
  • 38. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( ) ID: 2 NAME: ITO PROP: Female AGE: 21
  • 39. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( ) ID: 2 ID: 3 NAME: ITO LABEL: Like PROP: Female Since: 2011/08/06 AGE: 21 OutGoing: 2
  • 40. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( ) ID: 2 ID: 3 NAME: ITO LABEL: Like PROP: Female Since: 2011/08/06 AGE: 21 OutGoing: 2
  • 41. What is GraphDB ID: 1 Vertex (node : ) NAME: kimura PROP: Male AGE: 18 Edge ( ) ID: 2 ID: 3 NAME: ITO LABEL: Like PROP: Female Since: 2011/08/06 AGE: 21 OutGoing: 2
  • 42. The implementations for GraphDB http://en.wikipedia.org/wiki/GraphDB
  • 44. GraphDB Neo4j • True ACID transactions • High availability • Scales to billions of nods and relationships • High speed querying through traversals Single instance(GPLv3) Multiple instance(AGPLv3) Embedded EmbeddedGraphDatabase HighlyAvailableGraphDatabase Standalone Neo4j Server Neo4j Server high availability mode http://neo4j.org/
  • 45. Other my favorite features for Neo4j • RESTful APIs • Query Language(Cypher) • Full indexing – lucene • Implemented graph algorithm – A*, Dijkstra – High speed traverse • Gremlin supported – Like a query language http://www.tinkerpop.com/post/4633229547/tinkerpop-graph-stack
  • 46. Introduction simple Neo4j usecase Single node Multi node Embedded Analyses system Analyses system Analyses system Analyses system Server
  • 47. Introduction simple Neo4j usecase Single node Multi node Embedded Analyses system Analyses system Analyses system Analyses system Server
  • 48. Introduction simple Neo4j usecase Single node Multi node Analyses system Embedded Analyses system Analyses system Analyses system Server
  • 49. Introduction simple Neo4j usecase Single node Multi node Analyses system Embedded Analyses system Analyses system Analyses system Server
  • 50. Introduction to simple embedded Neo4j • Insert Vertices & make Relationships • Single node & Embedded • Traversal sample
  • 51. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { GraphDatabaseService graphDb = new EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); firstNode.setProperty("Name", "Kimura"); Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { tx.finish(); } graphDb.shutdown(); } }
  • 52. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { GraphDatabaseService graphDb = new EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); firstNode.setProperty("Name", "Kimura"); Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { tx.finish(); } graphDb.shutdown(); } }
  • 53. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { ID: 1 GraphDatabaseService graphDb = new NAME: kimura EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); firstNode.setProperty("Name", "Kimura"); Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { tx.finish(); } graphDb.shutdown(); } }
  • 54. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { ID: 1 GraphDatabaseService graphDb = new NAME: kimura EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); firstNode.setProperty("Name", "Kimura"); Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { tx.finish(); } graphDb.shutdown(); } }
  • 55. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { ID: 1 GraphDatabaseService graphDb = new NAME: kimura EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); firstNode.setProperty("Name", "Kimura"); Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { ID: 2 tx.finish(); NAME: Kato } graphDb.shutdown(); } }
  • 56. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { ID: 1 GraphDatabaseService graphDb = new NAME: kimura EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); firstNode.setProperty("Name", "Kimura"); Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { ID: 2 tx.finish(); NAME: Kato } graphDb.shutdown(); } }
  • 57. Insert vertices, make relationship public final class InputVertex { public static void main(final String[] args) { ID: 1 GraphDatabaseService graphDb = new NAME: kimura EmbeddedGraphDatabase("/tmp/neo4j"); Transaction tx = graphDb.beginTx(); try { Node firstNode = graphDb.createNode(); ID: 3 firstNode.setProperty("Name", "Kimura"); Relation: Like Node secondNode = graphDb.createNode(); secondNode.setProperty("Name", "Kato"); firstNode.createRelationshipTo(secondNode, DynamicRelationshipType.withName("LIKE")); tx.success(); } finally { ID: 2 tx.finish(); NAME: Kato } graphDb.shutdown(); } }
  • 58. Batch Insert • Non thread safe, non transaction • But very fast! public final class Batch { public static void main(final String[] args) { BatchInserter inserter = new BatchInserterImpl("/tmp/neo4j", BatchInserterImpl.loadProperties("/tmp/neo4j.props")); Map<String, Object> prop = new HashMap<String, Object>(); prop.put("Name", "Kimura"); prop.put("Age", 21); long node1 = inserter.createNode(prop); prop.put("Name", "Kato"); prop.put("Age", 21); long node2 = inserter.createNode(prop); inserter.createRelationship(node1, node2, DynamicRelationshipType.withName("LIKE"), null); inserter.shutdown(); } }
  • 59. Traversal sample • public static void main(final String[] args) { GraphDatabaseService graphDB = new EmbeddedGraphDatabase(args[0]); Node node = graphDB.getNodeById(1); Traverser friends = node.traverse( // Order.DEPTH_FIRST, BREADTH_FIRST // StopEvaluator.END_OF_GRAPH, DEPTH_ONE // ReturnableEvaluator.ALL_BUT_START_NODE, ALL, isReturnableNode() // DynamicRelationshipType.withName("LIKE"), // Direction.OUTGOING); INCOMING, BOTH for (Node nodeBuf : friends) { TraversalPosition currentPosition = friends.currentPosition(); } }
  • 60. Traversal sample Order.BREADTH_FIRST •
  • 61. Traversal sample Order.BREADTH_FIRST •
  • 62. Traversal sample Order.BREADTH_FIRST •
  • 63. Traversal sample Order.BREADTH_FIRST •
  • 64. Traversal sample Order.BREADTH_FIRST •
  • 65. Traversal sample Order.BREADTH_FIRST •
  • 66. Traversal sample Order.DEPTH_FIRST •
  • 67. Traversal sample Order.DEPTH_FIRST •
  • 68. Traversal sample Order.DEPTH_FIRST •
  • 69. Traversal sample Order.DEPTH_FIRST •
  • 70. Traversal sample Order.DEPTH_FIRST •
  • 71. Traversal sample Order.DEPTH_FIRST •
  • 72. Neoclipse sample http://wiki.neo4j.org/content/Neoclipse
  • 73. experiment • mixi Neo4j • • Machine: 24 core CPU, Memory 65GB • Neo4j: BatchInsert, community, embedded • Data • 1500 6 513m17sec (about 8.6h)
  • 74. Network Dataset • Stanford Large Network Dataset Collection • SNAP has a Wide variety of graph data! Social Networks Communication networks Citation networks Collaboration networks Web graphs Product co-purchasing networks Internet peer-to-peer networks Road networks Autonomous systems graphs Signed networks Wikipedia networks and metadata Memetracker and Twitter http://snap.stanford.edu/data/index.html
  • 76. Architecture Service Database Analysis Visualization (Social Graph)
  • 77. Introduction Analyses Sample • Centrality ( ) • Clustering coefficient ( )
  • 78. Centrality ( ) • = Pagerank
  • 79. • • = Vertex ( )
  • 80. • • = Vertex ( ) 1 1 1
  • 81. • • = Vertex ( ) 2 1 1 2 1 2
  • 82. • • = Vertex ( ) 2 1 1 2 1 2
  • 83. • • = Vertex ( ) 2 1 1 4 2 1 2
  • 84. • • = Vertex ( ) 2 1 1 4 2 1 2
  • 85. mixi • 1000 • summary Min 1st Que. Median Mean 3rd Que. Max 1.00 3.00 10.00 25.69 30.00 903.00
  • 86. • ≒
  • 87. • ≒ =0/3=0
  • 88. • ≒ =0/3=0 =1/3
  • 89. • ≒ =0/3=0 =1/3 =2/3
  • 90. • ≒ =0/3=0 =1/3 =2/3 =3/3=1
  • 91. 1000 • summary Min 1st Que. Median Mean 3rd Que. Max 0.00 0.00 0.1157 0.2071 0.2667 1.000
  • 94. 25 0.08
  • 95. 14 0.17
  • 96. 10 0.68
  • 97. 4 1
  • 99. 2hop Social Graph • Edge • ( ) • Vertex • ( ) • Gephi http://gephi.org/
  • 101. Social Graph • • GraphDB • Neo4j • R • Visualization

Editor's Notes