ããã«ã¡ã¯ãã»ãããã§ãï¼ï¼
ãããªãã¥ã¼ã¹ã話é¡ã«ãªãã¾ãããã
ãå¹³åå¤820ä¸ãä¸å¤®å¤20ä¸??ã
ããã«
一人暮らしの平均貯蓄額は822万円だが、中央値はなんと20万円のみ!実に48.1%の単身世帯が貯金ゼロという状況のようです。 - クレジットカードの読みもの
数年後「1人暮らしの貯蓄額は平均値800万円、中央値0円」 - かきのたねとピーナッツ
ã貯è0ã®äººã48%????ã
ãªããªãéç¾å®çãªæ°å¤ã«ãã©ããããã¨ãªãã ï¼ãã¨æãæ¹ãããã£ãããã§ãããã*1
ç§ã®å°éã¯Social science/ Complex scienceã ã£ãã®ã§ããã®ãããã®è©±é¡ã«ã¤ãã¦å°ãç§å¦çã«è§¦ãã¦ã¿ããã¨æãã¾ãã
- æ®éã®åå¸
- ããåå¸ã®ç»å ´
- ããåå¸ã¯ãªãç¾ããã®ãã
- æ¬é¡ ä»åã®ãã¥ã¼ã¹ã«ãããããåå¸ã¯
- ã¾ã¨ã
- ä»é²
æ®éã®åå¸
ã¿ãªãããæ®éã«æãæµ®ãã¹ãåå¸ã£ã¦ã©ããªãã®ã§ããããã ä¾ãã°ãã³ã¤ã³ã100åæããã¨ãã®è¡¨ã®æ°ã£ã¦ãä½åã«ãªãã¨æãã¾ãï¼
ã ããã50åã«ãªãã¨äºæ³ãã¤ãæ¹ãå¤ãã®ã§ã¯ãªãã§ããããã50ãããªãã«ãã¦ãããã®ä»è¿ã«éã¾ãã ããã¨ã å®éã«ã·ãã¥ã¬ã¼ã·ã§ã³ããã¦ã¿ã¾ããã(èªã¿ãããã®ããã«ãå®é¨ã³ã¼ãã¯æå¾ã«ã¤ãã¦ãã¾ãã)
ãã®ããã«ãç´æéã50ä»è¿ããã£ã¨ãå¤ããªãã¾ãã ããã¯å¤§æ°ã®æ³å(å³å¯ã«ã¯ä¸å¿æ¥µéå®ç)ã¨å¼ã°ãã¦ãã¦ãä¸åã³ã¤ã³ãæããçµæãä»ã«å½±é¿ãåã¼ããªã(ç¬ç«)ã§ããäºè±¡ãªãã°ãæãç«ã¤ãã¨ãç¥ããã¦ãã¾ãã ä¸ã®ä¸ã®ãã®ã®å¤ãã¯ãã®å¤§æ°ã®æ³åã«å¾ãã¨ããã¦ãã¾ãããµã¤ã³ããéãç¶ããããã ãããå¹³åã¯3.5ã«ãªãã ãããã¨ãã
ããåå¸ã®ç»å ´
ã¨ãããããããªã«ã¼ã«ãã¤ãã¦ã¿ãã¨ã©ããªãã§ãããã
- ã³ã¤ã³ãæãã
- 表ãåºããã³ã«ã0.05ãã¤è¡¨ãåºã確çãå¢ãã
ã³ã¤ã³ã¯åã®ã³ã¤ã³ãã¹ã«å½±é¿ãåãã確çãå¤ãããã©ããªåå¸ã«ãªãããæ³åãã¤ãã¾ããï¼ (ãã¡ããå®é¨ã³ã¼ãã¯æå¾ã«ã¤ãã¦ãã¾ãã)
é¢ç½ãå½¢ã«ãªãã¾ãããå½ããåã§ããã表ãåºãåæ°ãå¤ãã¨ããã«åã£ã¦ãã¾ãã ããã«é¢ç½ãã®ãããã®é »åº¦åå¸ã«å¯¾ãã¦ã両対æ°ã°ã©ããã¨ã£ã¦ã¿ã¾ããããã¨
ã»ã¼ã»ã¼ç´ç·ãç¾ãã¾ããï¼ï¼ãã®ãããªç¹å¾´ããã£ãåå¸ãããåå¸ã¨ããã¾ãã å®ã¯ã人é社ä¼ã«ãã®ããåå¸ã¯é常ã«å¤ãç¾ãããã¨ãç¥ããã¦ãã¾ãã å¹´åã®åå¸ã ä»äºã®å¿ããã¨é »åº¦ããã§ã¤ã¹ããã¯ã®åéã®æ°ã®åå¸ã ãã®ãããã®è©±ã¯ãAlbert BarabasiãDuncan Wattsãªã©ã®æ¬ã«è©³ããè¼ã£ã¦ãã¾ããé¢ç½ãã®ã§èå³ãããã°ãã²ï¼
ãã¼ã¹ã! 人éè¡åãæ¯é ãããã¿ã¼ã³
ããåå¸ã¯ãªãç¾ããã®ãã
ããåå¸ã¨ããè¨èãèãããã¨ããªãã¦ãã
- 2å²8å²ã®æ³å
- ãã³ã°ãã¼ã«
- ãã¬ã¼ãã®æ³å
- ã¹ã±ã¼ã«ããªã¼
ãªã©ã®è¨èãã©ããã®ããã¥ã©ã¼ãµã¤ã¨ã³ã¹ã§èãããã¨ããã人ãããã§ãããã ãããã¯å ¨ã¦ããåå¸ã¨é¢ãããæ·±ãè¨èãªã®ã§ãã
ãªãèµ·ããã®ãããããæ°ççã«èå¯ããã®ãAlbert BarabasiãDuncan Wattsã§ããåè
å½¼ããå°ãåºããçç±ã¯ããªãåç´æå¿«ããã£ããããã¨äººéã®ææ ãããåå¸ãä½ãã®ã§ã*2
- ãã§ã¤ã¹ããã¯ã§ã®äººæ°è ã¨ã¯åéã«ãªãããã¨ããæ°æã¡ãåã
- ã¿ã¹ã¯éã®å¤ãä»äºã¯å«ãªã®ã§å¾ã«åã
- ãéãæã£ã¦ãã人ã»ã©ä½è£ããããããã«å¯ã
ãã®ããã«ã社ä¼ã®å¤ãã¯æ£ã®ãã£ã¼ãããã¯ã«ããåãã¦ããã®ã§ãããããæ ¹æ¬åå ã§ãã
å ã»ã©ã®ã³ã¤ã³ã¯ãã®äººé社ä¼ã®æ§åã模æ¬çã«è¡¨ãããã®ã§ãããå¯ãããã®ã¯å¯ãã ãã®æ³åããããã®ãããªããåå¸ãçã¾ããã®ã§ãã
ããåå¸ã®å¹³åã¯ãã¾ãæå³ãæããªãã
å ã»ã©ã®ã³ã¤ã³ã®ã°ã©ããè¦ã¦ããã ããã¨ãããã¨æãã¾ãããããåå¸ã®å¹³åãã¨ã£ã¦ããã¾ãæå³ããªãã®ã§ãã2å²8å²ã®æ³åã¨å¼ã°ãã¦ããããã«ã2å²ã®äººéãå ¨ä½ã®8å²ããã£ããã£ã¦ãã£ã¦ããããã§ãã ãã®ããã§ãã»ã¨ãã©ã®äººãå¹³åæªæºã®åå ¥ããããªãã¦ãã¨ãèµ·ããã®ã§ãã
ããããã¨ãã«å½¹ã«ç«ã¤ã®ãä¸å¤®å¤ã§ãã ä¸å¤®å¤ã¨ããã®ã¯ãã¾ãã«çãä¸ã®å¤ã1000人ãããã500çªç®ã®å¤ã§ãã
æ£è¦åå¸ã¯ä¸å¤®å¤ã¨å¹³åå¤ãã»ã¨ãã©ä¸ç·ã«ãªãã¾ããå·¦å³å¯¾ç§°ã®ã°ã©ããããæ³åãã¤ããã¨æãã¾ãã ããããããåå¸ã§ã¯ä¸å¤®å¤ã®æ¹ãããä¸ç¸ãã¨ãããéã¨è¨ããã¨æãã¾ãã
æ¬é¡ ä»åã®ãã¥ã¼ã¹ã«ãããããåå¸ã¯
ããã§æ¬é¡ã§ããä»åã®ãã¥ã¼ã¹ã«ããã¦ãããåå¸ãä½ã£ã¦è¦ã¦ãå¯è£å±¤ã¨ä¸è¬åº¶æ°ã®ä¹é¢ãã©ã®ç¨åº¦ã¾ã§åºãã£ã¦ããããæ¤è¨¼ãã¦ã¿ã¾ãããããã¥ã¼ã¹ããæç²ããå¤ã¯ãã¡ã
- å¹³åå¤ 820ä¸å
- ä¸å¤®å¤ 20ä¸å
- æå¤§å¤ 8000ä¸å
ãããã«å¤§ä½åãããã«ãããåå¸ã®ãã©ã¡ã¼ã¿ã調æ´ãã¦ã¿ã¾ãã
import numpy as np import matplotlib.pyplot as plt np.random.seed(1) N = 30000 # ãµã³ãã«æ° dist = np.zeros(N) for i in range(N): dist[i] = 8000*np.random.power(0.12) #0.12ã¯ããåå¸ã®ãã©ã¡ã¼ã¿ print(dist.mean()) #å¹³åå¤ 855 print(np.median(dist)) #ä¸å¤®å¤ 25 plt.hist(dist,bins=400)
çµæã¯ãã¡ãããµã³ãã«æ°3ä¸äººã§ã®å¹´ååå¸ã§ãã
ãããã®ä¸ã®å¹´åãããåå¸ã«å¾ã£ã¦ãããªãã°ããã¥ã¼ã¹ããå¤æããã«ãã®ãããªåå¸ã«ãªãã¾ãã å®ã«æãããåå¸ããã¦ãã¾ãããã«ããã«ã¯ä¿¡ãããã¾ããããã®æ¨¡æ¬çãªåå¸ãå°ãåæãã¦è¦ã¾ããã
48.5%ã貯è0-20ä¸å
counts, savings = np.histogram(dist,bins=400) print(counts[0]) #14655 print (counts[0]/N*100.0) #48.55%
åå¸ãããã©ã®ç¨åº¦ã®è²¯èãæã£ã¦ãããã®åå¸ããããã¾ãããã®æ¨¡æ¬ãã¼ã¿ã«ããã°ã 14565/30000, å®ã«48.55%ã®äººã貯éã»ã¼0ã¨ããçµæã«ãªãã¾ãã ãã®çµæã¯ãåé ã®cardmicsããã®è¨äºãããããã¼ããã®è¨äºã§ç´¹ä»ããã¦ããå¤ã¨ãã»ã¨ãã©ä¸è´ãã¾ããã
ç´åæ°ã貯é0ãªè¨³ã§ãã…
ä¸ä½å±¤15.8%ãå ¨ä½ã®å¯ã®8å²ãæ¯é
ããã§ã¯ããã®åå¸ã§2å²8å²ã®æ³åãã¤ã¾ãå ¨ä½ã®2å²ã8å²ã®å¯ãå¾ã¦ããã®ãã«ã¤ãã¦åæãã¦ã¿ã¾ãã
## å ¨ä½ã®è²¯èé¡ total = np.dot(counts,savings[0:-1]) ## å ¨ä½ã®80%ãè¶ ããé »åº¦åå¸ã®ã©ã¤ã³ i = 96 print(np.dot(counts[i:],savings[i:-1])/total) # 0.803 ## ãã®äººãã¡ã®å ¨ä½ã«å ããäººå£ print(counts[i:].sum()/30000) #0.1584
2å²ããå°ãªããªãã¾ãããå®ã«æãããçµæã§ãã 2å²8å²ããããã£ã¨è²§å¯ã®æ ¼å·®ã¯æ¡å¤§ãã¤ã¤ããã®ããããã¾ããã
å ¨ä½ã®2å²ã«ãªãããã®è²¯èé¡ã¯1200ä¸å
éã«ã2å²8å²ã®æ³åã®å¼·è å´ãå ¨ä½ã®2å²ã«ãªãã«ã¯ã©ã®ç¨åº¦ã®è²¯èé¡ãå¿ è¦ãªã®ã§ããããã
i = 60 print(counts[i:].sum()/30000) #0.2037 print(savings[i]) # 1200
åºã¾ããã1200ä¸ã§ãï¼ ä¸ã®ä¸ã®åè ã«ãªããããã°ãã¨ãããã1000ä¸ã¯è²¯éããªããã¨ãããã¨ã§ããããã ãªããªãç¾å®ã¨éç¾å®ã®å¢ç®ã£ã½ãã¦ãé¢ç½ãã§ã
ã¾ã¨ã
ãã®ãã¼ã¿ãã¨ãã§ããã¼ã¿ã ã¨ãã人ããã¾ãããã¢ãã«ãã¼ã¹åæãã¦ã¿ãã¨ãããã¯ããã®ãã¼ã¿ãªããªã綺éºãªãã¼ã¿ãªã®ã§ã¯ãªãã…ï¼ã¨ããæã£ã¡ããã¾ãï¼
ãã¥ã¼ã¹è¨äºã ããã¿ãã¨ãå®ã«åç´æçã§ãã«ããã«ã¯ä¿¡ããããªãã§ãããããããããã®éç¾å®çãªè²§å¯ã®åå¸ã¯ãç¾å®ã«èµ·ãã£ã¦ãã¾ããã¨ããããåæã®çµæããã¾ã§ç¾å®çãªæ°å¤ãããã¤ãåºã¦ããã®ã«ãç§ãå°ãé©ãã¦ãã¾ããåãã¯ãªãã ããã®ãã³ãã¢ãã¼ã¿ã¯wwwã¿ãããªæ°åã§åæãå§ãããã®ã§ããã
ã¾ã¨ããã¨
ã» ããã¯äººéã®ææ ããå¼ãèµ·ãããããã¨ãå¤ã
ã» ããåå¸ã«å¹³åå¤ã¯ã»ã¼ç¡æå³ãä¸å¤®å¤ã使ãã¹ã
â ä»åã®ãã¼ã¿ãããåå¸ã«å¾ãã¨ä»®å®ããã¨
ã» 48%ã貯è0
ã» å ¨ä½ã®16%ã®äººã8å²ã®å¯ã寡å ãã¦ãã
ã» å ¨ä½ã®2å²ã®åè ã«ãªãããã«ã¯ã1200ä¸ã®è²¯èãå¿ è¦
ã¨ãããã¨ããããã¾ããã ä»åã®çµæã¯ãµã³ãã«æ°ãå°ãªãã®ã§ãä¸æ¦ã«å½ã¦ã¯ã¾ãã¨ã¯è¨ãã¾ããããç®å®ã«ã¯ãªãã®ã§ã¯ãªãã§ãããããçµæã¯ãªããªãã·ãã¢ã§ããããã¾ã«ã¯ããããã¢ãã«ãã¼ã¹ã®åæãã楽ãããã®ã§ããã
ä»é²
ä»é²1 ã³ã¤ã³ãã¹
- ã³ã¤ã³ãã¹ã100åè¡ãã表ãåºãåæ°ãè¨é²ã
- 30000åç¹°ãè¿ãã¦ãã©ã®ãããªçµæã«ãªããããããã
import numpy as np import matplotlib.pyplot as plt N = 30000 np.random.seed(1) def cointoss(iteration=100): omote = 0 for i in range(iteration): p = np.random.random() if p< 0.5: #確çã¯åã omote +=1 #表ãªãã«ã¦ã³ã return omote dist = np.zeros(N) for i in range(N): dist[i] = cointoss() plt.hist(dist,bins=range(0,100,2))
ä»é²2 å ¬å¹³ãããªãã³ã¤ã³ãã¹
- ã³ã¤ã³ãæãã
- 表ãåºããã³ã«ã0.05ãã¤è¡¨ãåºã確çãããã
ã¨ããã«ã¼ã«ãå ãã¦ã³ã¤ã³ãã¹ãè¡ã
import numpy as np import matplotlib.pyplot as plt N = 30000 np.random.seed(1) def cointoss(iteration=100): omote = 0 omote_prob = 0.5 for i in range(iteration): p = np.random.random() if p < omote_prob: omote +=1 omote_prob += 0.05 #表ãåºãã確çãå¢ãã return omote dist = np.zeros(N) for i in range(N): dist[i] = cointoss() plt.hist(dist,bins=range(0,100,2))