Abstract
The human body hosts vast microbial communities, termed the microbiome. Less well known is the fact that the human body also hosts vast numbers of different viruses, collectively termed the âviromeâ. Viruses are believed to be the most abundant and diverse biological entities on our planet, with an estimated 1031 particles on Earth. The human virome is similarly vast and complex, consisting of approximately 1013 particles per human individual, with great heterogeneity. In recent years, studies of the human virome using metagenomic sequencing and other methods have clarified aspects of human virome diversity at different body sites, the relationships to disease states and mechanisms of establishment of the human virome during early life. Despite increasing focus, it remains the case that the majority of sequence data in a typical virome study remain unidentified, highlighting the extent of unexplored viral âdark matterâ. Nevertheless, it is now clear that viral community states can be associated with adverse outcomes for the human host, whereas other states are characteristic of health. In this Review, we provide an overview of research on the human virome and highlight outstanding recent studies that explore the assembly, composition and dynamics of the human virome as well as hostâvirome interactions in health and disease.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220â6223 (2003).
Zhang, T. et al. RNA viral community in human feces: prevalence of a pathogenic viruses. PLoS Biol. 4, 0108â0118 (2006).
Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334â338 (2010).
Minot, S. et al. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450â12455 (2013).
Minot, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Conservation of gene cassettes among diverse viruses of the human gut. PLoS ONE 7, e42342 (2012).
Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616â1625 (2011).
Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable loci in the human gut virome. Proc. Natl Acad. Sci. USA 109, 3962â3966 (2012).
Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250â14255 (2002).
Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).
Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the âknown knknownâ of the microbiome. Cell Host Microbe 25, 195â209 (2019).
Fernandes, M. A. et al. Enteric virome and bacterial microbiota in children with ulcerative colitis and Crohn disease. J. Pediatr. Gastroenterol. Nutr. 68, 30â36 (2019).
Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohnâs Colitis 14, 1600â1610 (2020).
Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764â778.e5 (2019).
Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447â460 (2015).
Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169â1179 (2019).
Zhao, G. et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl Acad. Sci. USA 114, E6166âE6175 (2017).
Kim, K. W. et al. Distinct gut virome profile of pregnant women with type 1 diabetes in the ENDIA study. Open Forum Infect. Dis. 6, ofz025 (2019).
Han, M., Yang, P., Zhong, C. & Ning, K. The human gut virome in hypertension. Front. Microbiol. 9, 3150 (2018).
Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529â541.e5 (2018).
Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, 1â14 (2016).
Kieft, T. L. & Simmons, K. A. Allometry of animalâmicrobe interactions and global census of animal-associated microbes. Proc. Royal. Soc. B. 282, 20150702 (2015).
Sherrill-Mix, S. et al. Allometry and ecology of the bilaterian gut microbiome. mBio 9, e00319-18 (2018).
Jacob, F., Sussman, R. & Monod, J. On the nature of the repressor ensuring the immunity of lysogenic bacteria [French]. C. R. Acad. Sci. 254, 4214â4216 (1962).
Nishizawa, T. et al. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem. Biophys. Res. Commun. 241, 92â97 (1997).
Takahashi, K., Iwasa, Y., Hijikata, M. & Mishiro, S. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch. Virol. 145, 979â993 (2000).
Ninomiya, M. et al. Identification and genomic characterization of a novel human torque teno virus of 3.2 kb. J. Gen. Virol. 88, 1939â1944 (2007).
Freer, G. et al. The virome and its major component, anellovirus, a convoluted system molding human immune defenses and possibly affecting the development of asthma and respiratory diseases in childhood. Front. Microbiol. 9, 686 (2018).
Spandole, S., Cimponeriu, D., Berca, L. M. & MihÄescu, G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch. Virol. 160, 893â908 (2015).
Young, J. C. et al. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am. J. Transpl. 15, 200â209 (2015).
Monaco, C. L. et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe 19, 311â322 (2016).
Li, L. et al. AIDS alters the commensal plasma virome. J. Virol. 87, 10912â10915 (2013).
Abbas, A. A. et al. Redondoviridae, a family of small, circular DNA viruses of the human oro-respiratory tract associated with periodontitis and critical Illness. Cell Host Microbe 25, 719â729.e4 (2019).
Spezia, P. G. et al. Redondovirus DNA in human respiratory samples. J. Clin. Virol. 131, 104586 (2020).
Lázaro-Perona, F. et al. Metagenomic detection of two vientoviruses in a human sputum sample. Viruses 12, 327 (2020).
Mirzaei, M. K. & Maurice, C. F. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat. Rev. Microbiol. 15, 397â408 (2017).
Lim, E. S., Wang, D. & Holtz, L. R. The bacterial microbiome and virome milestones of infant development. Trends Microbiol. 24, 801â810 (2016).
Virgin, H. W. The virome in mammalian physiology and disease. Cell 157, 142â150 (2014).
Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F. & Gordon, J. I. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 10, 607â617 (2012).
Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527â541.e5 (2019).
Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753â1767 (2014).
Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M. & Pride, D. T. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE 10, e0134941 (2015).
Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 1â11 (2014).
Guerin, E. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 24, 653â664.e6 (2018).
Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727â1736 (2019).
Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38â46 (2018).
Shkoporov, A. N. et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 9, 1â8 (2018).
Sutton, T. D. S. & Hill, C. Gut bacteriophage: current understanding and challenges. Front. Endocrinol. 10, 784 (2019).
Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125â141 (2016).
Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470â474 (2020).
Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228â1234 (2015).
Bushman, F. D., McCormick, K. & Sherrill-Mix, S. Virus structures constrain transmission modes. Nat. Microbiol. 4, 1778â1780 (2019).
Zapor, M. Persistent detection and infectious potential of SARS-CoV-2 virus in clinical specimens from COVID-19 patients. Viruses 12, 1384 (2020).
Robles-Sikisaka, R. et al. Association between living environment and human oral viral ecology. ISME J. 7, 1710â1724 (2013).
Naidu, M., Robles-Sikisaka, R., Abeles, S. R., Boehm, T. K. & Pride, D. T. Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol. 14, 1â13 (2014).
Pride, D. T. et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6, 915â926 (2012).
Pérez-Brocal, V. & Moya, A. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS ONE 13, e0191867 (2018).
Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362â374 (2017).
Willner, D. et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 4, e7370 (2009).
Wylie, K. M., Mihindukulasuriya, K. A., Sodergren, E., Weinstock, G. M. & Storch, G. A. Sequence analysis of the human virome in febrile and afebrile children. PLoS ONE 7, e27735 (2012).
Clarke, E. L. et al. Microbial lineages in sarcoidosis a metagenomic analysis tailored for low-microbial content samples. Am. J. Respir. Crit. Care Med. 197, 225â234 (2018).
Abbas, A. A. et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am. J. Transplant. 17, 1313â1324 (2017).
Abbas, A. A. et al. Bidirectional transfer of Anelloviridae lineages between graft and host during lung transplantation. Am. J. Transplant. 19, 1086â1097 (2019).
Breitbart, M. & Rohwer, F. Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. Biotechniques 39, 729â736 (2005).
Moustafa, A. et al. The blood DNA virome in 8,000 humans. PLoS Pathog. 13, e1006292 (2017).
Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell 175, 347â359.e14 (2018).
Castillo, D. J., Rifkin, R. F., Cowan, D. A. & Potgieter, M. The healthy human blood microbiome: fact or fiction? Front. Cell. Infect. Microbiol. 9, 148 (2019).
Zárate, S., Taboada, B., Yocupicio-Monroy, M. & Arias, C. F. Human virome. Arch. Med. Res. 48, 701â716 (2017).
Nguyen, S. et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8, 1874â1891 (2017).
Foulongne, V. et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7, e38499 (2012).
Hannigan, G. D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 6, e01578-15 (2015).
Tirosh, O. et al. Expanded skin virome in DOCK8-deficient patients. Nat. Med. 24, 1815â1821 (2018).
Santiago-Rodriguez, T. M., Ly, M., Bonilla, N. & Pride, D. T. The human urine virome in association with urinary tract infections. Front. Microbiol. 6, 14 (2015).
Garretto, A., Miller-Ensminger, T., Wolfe, A. J. & Putonti, C. Bacteriophages of the lower urinary tract. Nat. Rev. Urol. 16, 422â432 (2019).
Jakobsen, R. R. et al. Characterization of the vaginal DNA virome in health and dysbiosis. Viruses 12, 1143 (2020).
Li, Y. et al. Semen virome of men with HIV on or off antiretroviral treatment. AIDS 34, 827â832 (2020).
Ghose, C. et al. The virome of cerebrospinal fluid: viruses where we once thought there were none. Front. Microbiol. 10, 2061 (2019).
Meyding Lamade, U. & Strank, C. Herpesvirus infections of the central nervous system in immunocompromised patients. Ther. Adv. Neurol. Disord. 5, 279â296 (2012).
McGavern, D. B. & Kang, S. S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 11, 318â329 (2011).
Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl Med. 6, 237ra65 (2014).
Antony, K. M. et al. The preterm placental microbiome varies in association with excess maternal gestational weight gain. Am. J. Obstet. Gynecol. 212, 653.e1â653.e16 (2015).
Prince, A. L. et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 214, 627.e1â627.e16 (2016).
Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 1â13 (2016).
Martinez, K. A. et al. Bacterial DNA is present in the fetal intestine and overlaps with that in the placenta in mice. PLoS ONE 13, e0197439 (2018).
Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obs. Gynecol. 220, 267.e1â267.e39 (2019).
Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).
Lim, E. S., Rodriguez, C. & Holtz, L. R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 6, 87 (2018).
Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).
de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329â334 (2019).
Epps, R. E., Pittelkow, M. R. & Daniel Su, W. P. TORCh syndrome. Semin. Cutan. Med. Surg. 14, 179â186 (1995).
Leeper, C. & Lutzkanin, A. Infections during pregnancy. Prim. Care 45, 567â586 (2018).
Carlson, A., Norwitz, E. R. & Stiller, R. J. Cytomegalovirus infection in pregnancy: should all women be screened? Rev. Obstet. Gynecol. 3, 172â179 (2010).
Arora, N., Sadovsky, Y., Dermody, T. S. & Coyne, C. B. Microbial vertical transmission during human pregnancy. Cell Host Microbe 21, 561â567 (2017).
Breitbart, M. et al. Viral diversity and dynamics in an infant gut. Res. Microbiol. 159, 367â373 (2008).
Maqsood, R. et al. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome 7, 156 (2019).
Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690â703 (2015).
Baumann-Dudenhoeffer, A. M., DâSouza, A. W., Tarr, P. I., Warner, B. B. & Dantas, G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat. Med. 24, 1822â1829 (2018).
Sausset, R., Petit, M. A., Gaboriau-Routhiau, V. & De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 13, 205â215 (2020).
Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction on the fitness of bacterial populations and hostâmicrobe interactions. J. Bacteriol. 197, 410â419 (2015).
Cortes, M. G., Krog, J. & Balázsi, G. Optimality of the spontaneous prophage induction rate. J. Theor. Biol. 483, 110005 (2019).
Jubelin, G. et al. Modulation of enterohaemorrhagic Escherichia coli survival and virulence in the human gastrointestinal tract. Microorganisms 6, 115 (2018).
De Paepe, M. et al. Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLOS Genet. 12, e1005861 (2016).
Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941â11946 (2015).
McCann, A. et al. Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ 6, e4694 (2018).
Black, M., Bhattacharya, S., Philip, S., Norman, J. E. & McLernon, D. J. Planned cesarean delivery at term and adverse outcomes in childhood health. J. Am. Med. Assoc. 314, 2271â2279 (2015).
Kuhle, S., Tong, O. S. & Woolcott, C. G. Association between caesarean section and childhood obesity: a systematic review and meta-analysis. Obes. Rev. 16, 295â303 (2015).
Adlercreutz, E. H., Wingren, C. J., Vincente, R. P., Merlo, J. & Agardh, D. Perinatal risk factors increase the risk of being affected by both type 1 diabetes and coeliac disease. Acta Paediatr. 104, 178â184 (2015).
Rutayisire, E., Huang, K., Liu, Y. & Tao, F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infantsâ life: a systematic review. BMC Gastroenterol. 16, 86 (2016).
Neu, J. & Rushing, J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 38, 321â331 (2011).
Hug, L., Alexander, M., You, D. & Alkema, L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob. Heal. 7, e710âe720 (2019).
Oude Munnink, B. B., Hoek, L. & van der Hoek, L. Viruses causing gastroenteritis: the known, the new and those beyond. Viruses 8, 42 (2016).
Turin, C. G. & Ochoa, T. J. The role of maternal breast milk in preventing infantile diarrhea in the developing world. Curr. Trop. Med. Rep. 1, 97â105 (2014).
Lamberti, L. M., Fischer Walker, C. L., Noiman, A., Victora, C. & Black, R. E. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health 11, S15 (2011).
Wakabayashi, H., Oda, H., Yamauchi, K. & Abe, F. Lactoferrin for prevention of common viral infections. J. Infect. Chemother. 20, 666â671 (2014).
Lang, J. et al. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS ONE 6, e23710 (2011).
Witkowska-Zimny, M. & Kaminska-El-Hassan, E. Cells of human breast milk. Cell. Mol. Biol. Lett. 22, 11 (2017).
Simister, N. E. Placental transport of immunoglobulin G. Vaccine 21, 3365â3369 (2003).
Pou, C. et al. The repertoire of maternal anti-viral antibodies in human newborns. Nat. Med. 25, 591â596 (2019).
Albrecht, M. & Arck, P. C. Vertically transferred immunity in neonates: mothers, mechanisms and mediators. Front. Immunol. 11, 555 (2020).
WiciÅski, M., Sawicka, E., GÄbalski, J., Kubiak, K. & Malinowski, B. Human milk oligosaccharides: health benefits, potential applications in infant formulas, and pharmacology. Nutrients 12, 266 (2020).
Berlutti, F. et al. Antiviral properties of lactoferrin â a natural immunity molecule. Molecules 16, 6992â7012 (2011).
Conesa, C. et al. Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 131â139 (2008).
Pannaraj, P. S. et al. Shared and distinct features of human milk and infant stool viromes. Front. Microbiol. 9, 1162 (2018).
Duranti, S. et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 5, 66 (2017).
Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789â799 (2014).
Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731â743 (2016).
Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572â584.e3 (2016).
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210â215 (2018).
Moreno-Gallego, J. L. et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe 25, 261â272.e5 (2019).
Orth, G. Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin. Immunol. 18, 362â374 (2006).
Clarke, E. L. et al. T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Med. 10, 70 (2018).
Zuo, T. et al. HumanâgutâDNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 28, 741â751.e4 (2020).
Holtz, L. R. et al. Geographic variation in the eukaryotic virome of human diarrhea. Virology 468, 556â564 (2014).
Gregory, A. C. et al. The Gut Virome Database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724â740.e8 (2020).
Rampelli, S. et al. Characterization of the human DNA gut virome across populations with different subsistence strategies and geographical origin. Environ. Microbiol. 19, 4728â4735 (2017).
Neil, J. A. & Cadwell, K. The intestinal virome and immunity. J. Immunol. 201, 1615â1624 (2018).
Seo, S. U. & Kweon, M. N. Viromeâhost interactions in intestinal health and disease. Curr. Opin. Virol. 37, 63â71 (2019).
Moghadam, M. T. et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect. Drug Resist. 13, 45â61 (2020).
Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219â232 (2019).
Galtier, M. et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohnâs disease. J. Crohns Colitis 11, 840â847 (2017).
Taylor, V. L., Fitzpatrick, A. D., Islam, Z. & Maxwell, K. L. The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103, 1â31 (2019).
Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219â222 (2013).
Boling, L. et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 11, 721â734 (2020).
Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).
Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285â299.e8 (2019).
Lindfors, K. et al. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study. Gut 69, 1416â1422 (2019).
Khan Mirzaei, M. et al. Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27, 199â212.e5 (2020).
Desai, C. et al. Growth velocity in children with environmental enteric dysfunction is associated with specific bacterial and viral taxa of the gastrointestinal tract in Malawian children. PLoS Negl. Trop. Dis. 14, e0008387 (2020).
Lee, S. & Baldridge, M. T. Viruses RIG up intestinal immunity. Nat. Immunol. 20, 1563â1564 (2019).
Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94â98 (2014).
Ingle, H. et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat. Microbiol. 4, 1120â1128 (2019).
Liu, L. et al. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling. Nat. Immunol. 20, 1681â1691 (2019).
Pérez-Brocal, V. et al. Metagenomic analysis of Crohnâs disease patients identifies changes in the virome and microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflamm. Bowel Dis. 21, 2515â2532 (2015).
Ma, Y., You, X., Mai, G., Tokuyasu, T. & Liu, C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 24 (2018).
Ungaro, F. et al. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 10, 149â158 (2019).
Legoff, J. et al. The eukaryotic gut virome in hematopoietic stem cell transplantation: new clues in enteric graft-versus-host disease. Nat. Med. 23, 1080â1085 (2017).
ÅoÅ, M. & Wegrzyn, G. in Advances in Virus Research Vol. 82 339â349 (Academic Press, 2012).
Drew, H. R. et al. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. USA 78, 2179â2183 (1981).
Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432â436 (2020).
Wang, Y., Hammes, F., Düggelin, M. & Egli, T. Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters. Environ. Sci. Technol. 42, 6749â6754 (2008).
Weil, A. A., Becker, R. L. & Harris, J. B. Vibrio cholerae at the intersection of immunity and the microbiome. mSphere 4, e00597-19 (2019).
Ryan, M. P. & Pembroke, J. T. Brevundimonas spp: emerging global opportunistic pathogens. Virulence 9, 480â493 (2018).
Roux, S. et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 2016, e2777 (2016).
Kim, K. H. & Bae, J. W. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Environ. Microbiol. 77, 7663â7668 (2011).
Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D. & Wang, D. Hyperexpansion of RNA bacteriophage diversity. PLOS Biol. 14, e1002409 (2016).
Callanan, J. et al. Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci. Adv. 6, eaay5981 (2020).
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Kim, D. et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5, 1â14 (2017).
Zolfo, M. et al. Detecting contamination in viromes using ViromeQC. Nat. Biotechnol. 37, 1408â1412 (2019).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150â3152 (2012).
Taylor, L. J., Abbas, A. & Bushman, F. D. grabseqs: simple downloading of reads and metadata from multiple next-generation sequencing data repositories. Bioinformatics 36, 3607â3609 (2020).
Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69 (2017).
Tithi, S. S., Aylward, F. O., Jensen, R. V. & Zhang, L. FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ 2018, e4227 (2018).
Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinforma. 15, 76 (2014).
Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder â identifying bacteriophage sequences in metagenomic data sets. PLoS ONE 11, e0163111 (2016).
Rampelli, S. et al. ViromeScan: a new tool for metagenomic viral community profiling. BMC Genomics 17, 165 (2016).
Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. PeerJ 2017, e3243 (2017).
Hatcher, E. L. et al. Virus variation resource-improved response to emergent viral outbreaks. Nucleic Acids Res. 45, D482âD490 (2017).
Bateman, A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506âD515 (2019).
Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491âD498 (2017).
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427âD432 (2019).
Skewes-Cox, P., Sharpton, T. J., Pollard, K. S. & DeRisi, J. L. Profile hidden Markov models for the detection of viruses within metagenomic sequence data. PLoS ONE 9, e105067 (2014).
Clarke, E. L. et al. Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome 7, 46 (2019).
Tisza, M. J. et al. Discovery of several thousand highly diverse circular DNA viruses. eLife 9, e51971 (2020).
Zhao, G. et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 503, 21â30 (2017).
McNair, K., Bailey, B. A. & Edwards, R. A. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28, 614â618 (2012).
Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16âW21 (2016).
Acknowledgements
The authors thank members of the Bushman laboratory for help and suggestions, and L. Zimmerman for artwork designs. This work was supported by the National Institutes of Health (NIH) (grants R61-HL137063, R01-HL113252), the Penn Center for AIDS Research (P30 AI 045008), the PennCHOP Microbiome Program and a Tobacco Formula grant under the Commonwealth Universal Research Enhancement (CURE) programme (grant number SAP # 4100068710), and the Crohnâs and Colitis Foundation.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Microbiology thanks F. Maggi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Temperate phages
-
Phages that are able to grow via both lytic and lysogenic replication pathways.
- Viral contigs
-
Contiguous sequences assembled from overlapping sequence reads, which are then annotated as whole or partial viral genomes.
- Multiple displacement amplification
-
A whole-genome amplification method, which starts by binding random primers to the template DNA and is then followed by strand displacement DNA synthesis performed by DNA polymerase, usually Φ29 DNA polymerase.
- Primary immunodeficiencies
-
A group of rare immune disorders caused by genetic defects.
- Meconium
-
The first stool of a neonate.
Rights and permissions
About this article
Cite this article
Liang, G., Bushman, F.D. The human virome: assembly, composition and host interactions. Nat Rev Microbiol 19, 514â527 (2021). https://doi.org/10.1038/s41579-021-00536-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41579-021-00536-5