Acceptability of policy or system change
The extent to which a policy or system change is evaluated unfavourably or favourably, or rejected or supported, by members of the general public (public acceptability) or politicians or governments (political acceptability). Acceptability may vary from totally unacceptable/fully rejected to totally acceptable/fully supported; individuals may differ in how acceptable policies or system changes are believed to be.
Adaptability
See Adaptive capacity.
Adaptation
In human systems, the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities. In natural systems, the process of adjustment to actual climate and its effects; human intervention may facilitate adjustment to expected climate and its effects.
Incremental adaptation
Adaptation that maintains the essence and integrity of a system or process at a given scale. In some cases, incremental adaptation can accrue to result in transformational adaptation (Termeer et al., 2017; TÃ bara et al., 2018)2.
Transformational adaptation
Adaptation that changes the fundamental attributes of a socio-ecological system in anticipation of climate change and its impacts.
Adaptation limits
The point at which an actorâs objectives (or system needs) cannot be secured from intolerable risks through adaptive actions.
- Hard adaptation limit: No adaptive actions are possible to avoid intolerable risks.
- Soft adaptation limit: Options are currently not available to avoid intolerable risks through adaptive action.
See also Adaptation options, Adaptive capacity and Maladaptive actions (Maladaptation).
Adaptation behaviour
See Human behaviour.
Adaptation limits
See Adaptation.
Adaptation options
The array of strategies and measures that are available and appropriate for addressing adaptation. They include a wide range of actions that can be categorized as structural, institutional, ecological or behavioural. See also Adaptation, Adaptive capacity and Maladaptive actions (Maladaptation).
Adaptation pathways
See Pathways.
Adaptive capacity
The ability of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. This glossary entry builds from definitions used in previous IPCC reports and the Millennium Ecosystem Assessment (MEA, 2005)3. See also Adaptation, Adaptation options and Maladaptive actions (Maladaptation).
Adaptive governance
See Governance.
Aerosol
A suspension of airborne solid or liquid particles, with a typical size between a few nanometres and 10 μm that reside in the atmosphere for at least several hours. The term aerosol, which includes both the particles and the suspending gas, is often used in this report in its plural form to mean aerosol particles. Aerosols may be of either natural or anthropogenic origin. Aerosols may influence climate in several ways: through both interactions that scatter and/or absorb radiation and through interactions with cloud microphysics and other cloud properties, or upon deposition on snow- or ice-covered surfaces thereby altering their albedo and contributing to climate feedback. Atmospheric aerosols, whether natural or anthropogenic, originate from two different pathways: emissions of primary particulate matter (PM), and formation of secondary PM from gaseous precursors. The bulk of aerosols are of natural origin. Some scientists use group labels that refer to the chemical composition, namely: sea salt, organic carbon, black carbon (BC), mineral species (mainly desert dust), sulphate, nitrate, and ammonium. These labels are, however, imperfect as aerosols combine particles to create complex mixtures. See also Short-lived climate forcers (SLCF) and Black carbon (BC).
Afforestation
Planting of new forests on lands that historically have not contained forests. For a discussion of the term forest and related terms such as afforestation, reforestation and deforestation, see the IPCC Special Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000)4, information provided by the United Nations Framework Convention on Climate Change (UNFCCC, 2013)5 and the report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003)6. See also Reforestation, Deforestation, and Reducing Emissions from Deforestation and Forest Degradation (REDD+).
Agreement
In this report, the degree of agreement within the scientific body of knowledge on a particular finding is assessed based on multiple lines of evidence (e.g., mechanistic understanding, theory, data, models, expert judgement) and expressed qualitatively (Mastrandrea et al., 2010)7. See also Evidence, Confidence, Likelihood and Uncertainty.
Air pollution
Degradation of air quality with negative effects on human health or the natural or built environment due to the introduction, by natural processes or human activity, into the atmosphere of substances (gases, aerosols) which have a direct (primary pollutants) or indirect (secondary pollutants) harmful effect. See also Aerosol and Short-lived climate forcers (SLCF).
Albedo
The fraction of solar radiation reflected by a surface or object, often expressed as a percentage. Snow-covered surfaces have a high albedo, the surface albedo of soils ranges from high to low, and vegetation-covered surfaces and the oceans have a low albedo. The Earthâs planetary albedo changes mainly through varying cloudiness and changes in snow, ice, leaf area and land cover.
Ambient persuasive technology
Technological systems and environments that are designed to change human cognitive processing, attitudes and behaviours without the need for the userâs conscious attention.
Anomaly
The deviation of a variable from its value averaged over a reference period.
Anthropocene
The âAnthropoceneâ is a proposed new geological epoch resulting from significant human-driven changes to the structure and functioning of the Earth System, including the climate system. Originally proposed in the Earth System science community in 2000, the proposed new epoch is undergoing a formalization process within the geological community based on the stratigraphic evidence that human activities have changed the Earth System to the extent of forming geological deposits with a signature that is distinct from those of the Holocene, and which will remain in the geological record. Both the stratigraphic and Earth System approaches to defining the Anthropocene consider the mid-20th Century to be the most appropriate starting date, although others have been proposed and continue to be discussed. The Anthropocene concept has been taken up by a diversity of disciplines and the public to denote the substantive influence humans have had on the state, dynamics and future of the Earth System. See also Holocene.
Anthropogenic
Resulting from or produced by human activities. See also Anthropogenic emissions and Anthropogenic removals.
Anthropogenic emissions
Emissions of greenhouse gases (GHGs), precursors of GHGs and aerosols caused by human activities. These activities include the burning of fossil fuels, deforestation, land use and land-use changes (LULUC), livestock production, fertilisation, waste management and industrial processes. See also Anthropogenic and Anthropogenic removals.
Anthropogenic removals
Anthropogenic removals refer to the withdrawal of GHGs from the atmosphere as a result of deliberate human activities. These include enhancing biological sinks of CO2 and using chemical engineering to achieve long-term removal and storage. Carbon capture and storage (CCS) from industrial and energy-related sources, which alone does not remove CO2 in the atmosphere, can reduce atmospheric CO2 if it is combined with bioenergy production (BECCS). See also Anthropogenic emissions, Bioenergy with carbon dioxide capture and storage (BECCS) and Carbon dioxide capture and storage (CCS).
Artificial intelligence (AI)
Computer systems able to perform tasks normally requiring human intelligence, such as visual perception and speech recognition.
Atmosphere
The gaseous envelope surrounding the earth, divided into five layers â the troposphere which contains half of the Earthâs atmosphere, the stratosphere, the mesosphere, the thermosphere, and the exosphere, which is the outer limit of the atmosphere. The dry atmosphere consists almost entirely of nitrogen (78.1% volume mixing ratio) and oxygen (20.9% volume mixing ratio), together with a number of trace gases, such as argon (0.93 % volume mixing ratio), helium and radiatively active greenhouse gases (GHGs) such as carbon dioxide (CO2) (0.04% volume mixing ratio) and ozone (O3). In addition, the atmosphere contains the GHG water vapour (H2O), whose amounts are highly variable but typically around 1% volume mixing ratio. The atmosphere also contains clouds and aerosols. See also Troposphere, Stratosphere, Greenhouse gas (GHG) and Hydrological cycle.
Atmosphereâocean general circulation model (AOGCM)
See Climate model.
Attribution
See Detection and attribution.
Baseline scenario
In much of the literature the term is also synonymous with the term business-as-usual (BAU) scenario, although the term BAU has fallen out of favour because the idea of business as usual in century-long socio-economic projections is hard to fathom. In the context of transformation pathways, the term baseline scenarios refers to scenarios that are based on the assumption that no mitigation policies or measures will be implemented beyond those that are already in force and/or are legislated or planned to be adopted. Baseline scenarios are not intended to be predictions of the future, but rather counterfactual constructions that can serve to highlight the level of emissions that would occur without further policy effort. Typically, baseline scenarios are then compared to mitigation scenarios that are constructed to meet different goals for greenhouse gas (GHG) emissions, atmospheric concentrations or temperature change. The term baseline scenario is often used interchangeably with reference scenario and no policy scenario. See also Emission scenario and Mitigation scenario.
Battery electric vehicle (BEV)
See Electric vehicle (EV).
Biochar
Stable, carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar may be added to soils to improve soil functions and to reduce greenhouse gas emissions from biomass and soils, and for carbon sequestration. This definition builds from IBI (2018)8.
Biodiversity
Biological diversity means the variability among living organisms from all sources, including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems (UN, 1992)9.
Bioenergy
Energy derived from any form of biomass or its metabolic by-products. See also Biomass and Biofuel.
Bioenergy with carbon dioxide capture and storage (BECCS)
Carbon dioxide capture and storage (CCS) technology applied to a bioenergy facility. Note that depending on the total emissions of the BECCS supply chain, carbon dioxide (CO2) can be removed from the atmosphere. See also Bioenergy and Carbon dioxide capture and storage (CCS).
Biofuel
A fuel, generally in liquid form, produced from biomass. Biofuels currently include bioethanol from sugarcane or maize, biodiesel from canola or soybeans, and black liquor from the paper-manufacturing process. See also Biomass and Bioenergy.
Biomass
Living or recently dead organic material. See also Bioenergy and Biofuel.
Biophilic urbanism
Designing cities with green roofs, green walls and green balconies to bring nature into the densest parts of cities in order to provide green infrastructure and human health benefits. See also Green infrastructure.
Black carbon (BC)
Operationally defined aerosol species based on measurement of light absorption and chemical reactivity and/or thermal stability. It is sometimes referred to as soot. BC is mostly formed by the incomplete combustion of fossil fuels, biofuels and biomass but it also occurs naturally. It stays in the atmosphere only for days or weeks. It is the most strongly light-absorbing component of particulate matter (PM) and has a warming effect by absorbing heat into the atmosphere and reducing the albedo when deposited on snow or ice. See also Aerosol.
Blue carbon
Blue carbon is the carbon captured by living organisms in coastal (e.g., mangroves, salt marshes, seagrasses) and marine ecosystems, and stored in biomass and sediments.
Burden sharing (also referred to as Effort sharing)
In the context of mitigation, burden sharing refers to sharing the effort of reducing the sources or enhancing the sinks of greenhouse gases (GHGs) from historical or projected levels, usually allocated by some criteria, as well as sharing the cost burden across countries.
Business as usual (BAU)
See Baseline scenario.
Carbon budget
This term refers to three concepts in the literature: (1) an assessment of carbon cycle sources and sinks on a global level, through the synthesis of evidence for fossil fuel and cement emissions, land-use change emissions, ocean and land CO2 sinks, and the resulting atmospheric CO2 growth rate. This is referred to as the global carbon budget; (2) the estimated cumulative amount of global carbon dioxide emissions that that is estimated to limit global surface temperature to a given level above a reference period, taking into account global surface temperature contributions of other GHGs and climate forcers; (3) the distribution of the carbon budget defined under (2) to the regional, national, or sub-national level based on considerations of equity, costs or efficiency. See also Remaining carbon budget.
Carbon cycle
The term used to describe the flow of carbon (in various forms, e.g., as carbon dioxide (CO2), carbon in biomass, and carbon dissolved in the ocean as carbonate and bicarbonate) through the atmosphere, hydrosphere, terrestrial and marine biosphere and lithosphere. In this report, the reference unit for the global carbon cycle is GtCO2 or GtC (Gigatonne of carbon = 1 GtC = 1015 grams of carbon. This corresponds to 3.667 GtCO2).
Carbon dioxide (CO2)
A naturally occurring gas, CO2 is also a by-product of burning fossil fuels (such as oil, gas and coal), of burning biomass, of land-use changes (LUC) and of industrial processes (e.g., cement production). It is the principal anthropogenic greenhouse gas (GHG) that affects the Earthâs radiative balance. It is the reference gas against which other GHGs are measured and therefore has a global warming potential (GWP) of 1. See also Greenhouse gas (GHG).
Carbon dioxide capture and storage (CCS)
A process in which a relatively pure stream of carbon dioxide (CO2) from industrial and energy-related sources is separated (captured), conditioned, compressed and transported to a storage location for long-term isolation from the atmosphere. Sometimes referred to as Carbon capture and storage. See also Carbon dioxide capture and utilisation (CCU), Bioenergy with carbon dioxide capture and storage (BECCS) and Uptake.
Carbon dioxide capture and utilisation (CCU)
A process in which CO2 is captured and then used to produce a new product. If the CO2 is stored in a product for a climate-relevant time horizon, this is referred to as carbon dioxide capture, utilisation and storage (CCUS). Only then, and only combined with CO2 recently removed from the atmosphere, can CCUS lead to carbon dioxide removal. CCU is sometimes referred to as carbon dioxide capture and use. See also Carbon dioxide capture and storage (CCS).
Carbon dioxide capture, utilisation and storage (CCUS)
See Carbon dioxide capture and utilisation (CCU).
Carbon dioxide removal (CDR)
Anthropogenic activities removing CO2 from the atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products. It includes existing and potential anthropogenic enhancement of biological or geochemical sinks and direct air capture and storage, but excludes natural CO2 uptake not directly caused by human activities. See also Mitigation (of climate change), Greenhouse gas removal (GGR), Negative emissions, Direct air carbon dioxide capture and storage (DACCS) and Sink.
Carbon intensity
The amount of emissions of carbon dioxide (CO2) released per unit of another variable such as gross domestic product (GDP), output energy use or transport.
Carbon neutrality
See Net zero CO2 emissions.
Carbon price
The price for avoided or released carbon dioxide (CO2) or CO2-equivalent emissions. This may refer to the rate of a carbon tax, or the price of emission permits. In many models that are used to assess the economic costs of mitigation, carbon prices are used as a proxy to represent the level of effort in mitigation policies.
Carbon sequestration
The process of storing carbon in a carbon pool. See also Blue carbon, Carbon dioxide capture and storage (CCS), Uptake and Sink.
Carbon sink
See Sink.
Clean Development Mechanism (CDM)
A mechanism defined under Article 12 of the Kyoto Protocol through which investors (governments or companies) from developed (Annex B) countries may finance greenhouse gas (GHG) emission reduction or removal projects in developing countries (Non-Annex B), and receive Certified Emission Reduction Units (CERs) for doing so. The CERs can be credited towards the commitments of the respective developed countries. The CDM is intended to facilitate the two objectives of promoting sustainable development (SD) in developing countries and of helping industrialised countries to reach their emissions commitments in a cost-effective way.
Climate
Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period for averaging these variables is 30 years, as defined by the World Meteorological Organization. The relevant quantities are most often surface variables such as temperature, precipitation and wind. Climate in a wider sense is the state, including a statistical description, of the climate system.
Climate change
Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition of the atmosphere or in land use. Note that the Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: âa change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.â The UNFCCC thus makes a distinction between climate change attributable to human activities altering the atmospheric composition and climate variability attributable to natural causes. See also Climate variability, Global warming, Ocean acidification (OA) and Detection and attribution.
Climate change commitment
Climate change commitment is defined as the unavoidable future climate change resulting from inertia in the geophysical and socio-economic systems. Different types of climate change commitment are discussed in the literature (see subterms). Climate change commitment is usually quantified in terms of the further change in temperature, but it includes other future changes, for example in the hydrological cycle, in extreme weather events, in extreme climate events, and in sea level.
Constant composition commitment
The constant composition commitment is the remaining climate change that would result if atmospheric composition, and hence radiative forcing, were held fixed at a given value. It results from the thermal inertia of the ocean and slow processes in the cryosphere and land surface.
Constant emissions commitment
The constant emissions commitment is the committed climate change that would result from keeping anthropogenic emissions constant.
Zero emissions commitment
The zero emissions commitment is the climate change commitment that would result from setting anthropogenic emissions to zero. It is determined by both inertia in physical climate system components (ocean, cryosphere, land surface) and carbon cycle inertia.
Feasible scenario commitment
The feasible scenario commitment is the climate change that corresponds to the lowest emission scenario judged feasible.
Infrastructure commitment
The infrastructure commitment is the climate change that would result if existing greenhouse gas and aerosol emitting infrastructure were used until the end of its expected lifetime.
Climate-compatible development (CCD)
A form of development building on climate strategies that embrace development goals and development strategies that integrate climate risk management, adaptation and mitigation. This definition builds from Mitchell and Maxwell (2010)10.
Climate extreme (extreme weather or climate event)
The occurrence of a value of a weather or climate variable above (or below) a threshold value near the upper (or lower) ends of the range of observed values of the variable. For simplicity, both extreme weather events and extreme climate events are referred to collectively as âclimate extremesâ. See also Extreme weather event.
Climate feedback
An interaction in which a perturbation in one climate quantity causes a change in a second and the change in the second quantity ultimately leads to an additional change in the first. A negative feedback is one in which the initial perturbation is weakened by the changes it causes; a positive feedback is one in which the initial perturbation is enhanced. The initial perturbation can either be externally forced or arise as part of internal variability.
Climate governance
See Governance.
Climate justice
See Justice.
Climate model
A numerical representation of the climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for some of its known properties. The climate system can be represented by models of varying complexity; that is, for any one component or combination of components a spectrum or hierarchy of models can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, chemical or biological processes are explicitly represented, or the level at which empirical parametrizations are involved. There is an evolution towards more complex models with interactive chemistry and biology. Climate models are applied as a research tool to study and simulate the climate and for operational purposes, including monthly, seasonal and interannual climate predictions. See also Earth system model (ESM).
Climate neutrality
Concept of a state in which human activities result in no net effect on the climate system. Achieving such a state would require balancing of residual emissions with emission (carbon dioxide) removal as well as accounting for regional or local biogeophysical effects of human activities that, for example, affect surface albedo or local climate. See also Net zero CO2 emissions.
Climate projection
A climate projection is the simulated response of the climate system to a scenario of future emission or concentration of greenhouse gases (GHGs) and aerosols, generally derived using climate models. Climate projections are distinguished from climate predictions by their dependence on the emission/concentration/radiative forcing scenario used, which is in turn based on assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realized.
Climate-resilient development pathways (CRDPs)
Trajectories that strengthen sustainable development and efforts to eradicate poverty and reduce inequalities while promoting fair and cross-scalar adaptation to and resilience in a changing climate. They raise the ethics, equity and feasibility aspects of the deep societal transformation needed to drastically reduce emissions to limit global warming (e.g., to 1.5°C) and achieve desirable and liveable futures and well-being for all.
Climate-resilient pathways
Iterative processes for managing change within complex systems in order to reduce disruptions and enhance opportunities associated with climate change. See also Development pathways (under Pathways), Transformation pathways (under Pathways), and Climate-resilient development pathways (CRDPs).
Climate sensitivity
Climate sensitivity refers to the change in the annual global mean surface temperature in response to a change in the atmospheric CO2 concentration or other radiative forcing.
Equilibrium climate sensitivity
Refers to the equilibrium (steady state) change in the annual global mean surface temperature following a doubling of the atmospheric carbon dioxide (CO2) concentration. As a true equilibrium is challenging to define in climate models with dynamic oceans, the equilibrium climate sensitivity is often estimated through experiments in AOGCMs where CO2 levels are either quadrupled or doubled from pre-industrial levels and which are integrated for 100-200 years. The climate sensitivity parameter (units: °C (W mâ2)â1) refers to the equilibrium change in the annual global mean surface temperature following a unit change in radiative forcing.
Effective climate sensitivity
An estimate of the global mean surface temperature response to a doubling of the atmospheric carbon dioxide (CO2) concentration that is evaluated from model output or observations for evolving non-equilibrium conditions. It is a measure of the strengths of the climate feedbacks at a particular time and may vary with forcing history and climate state, and therefore may differ from equilibrium climate sensitivity.
Transient climate response
The change in the global mean surface temperature, averaged over a 20-year period, centered at the time of atmospheric CO2 doubling, in a climate model simulation in which CO2 increases at 1% yr-1 from pre-industrial. It is a measure of the strength of climate feedbacks and the timescale of ocean heat uptake.
Climate services
Climate services refers to information and products that enhance usersâ knowledge and understanding about the impacts of climate change and/or climate variability so as to aid decision-making of individuals and organizations and enable preparedness and early climate change action. Products can include climate data products.
Climate-smart agriculture (CSA)
Climate-smart agriculture (CSA) is an approach that helps to guide actions needed to transform and reorient agricultural systems to effectively support development and ensure food security in a changing climate. CSA aims to tackle three main objectives: sustainably increasing agricultural productivity and incomes, adapting and building resilience to climate change, and reducing and/or removing greenhouse gas emissions, where possible (FAO, 2018)11.
Climate system
The climate system is the highly complex system consisting of five major components: the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere and the interactions between them. The climate system evolves in time under the influence of its own internal dynamics and because of external forcings such as volcanic eruptions, solar variations and anthropogenic forcings such as the changing composition of the atmosphere and land-use change.
Climate target
Climate target refers to a temperature limit, concentration level, or emissions reduction goal used towards the aim of avoiding dangerous anthropogenic interference with the climate system. For example, national climate targets may aim to reduce greenhouse gas emissions by a certain amount over a given time horizon, for example those under the Kyoto Protocol.
Climate variability
Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all spatial and temporal scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (internal variability), or to variations in natural or anthropogenic external forcing (external variability). See also Climate change.
CO2 equivalent (CO2-eq) emission
The amount of carbon dioxide (CO2) emission that would cause the same integrated radiative forcing or temperature change, over a given time horizon, as an emitted amount of a greenhouse gas (GHG) or a mixture of GHGs. There are a number of ways to compute such equivalent emissions and choose appropriate time horizons. Most typically, the CO2-equivalent emission is obtained by multiplying the emission of a GHG by its global warming potential (GWP) for a 100-year time horizon. For a mix of GHGs it is obtained by summing the CO2-equivalent emissions of each gas. CO2-equivalent emission is a common scale for comparing emissions of different GHGs but does not imply equivalence of the corresponding climate change responses. There is generally no connection between CO2-equivalent emissions and resulting CO2-equivalent concentrations.
Co-benefits
The positive effects that a policy or measure aimed at one objective might have on other objectives, thereby increasing the total benefits for society or the environment. Co-benefits are often subject to uncertainty and depend on local circumstances and implementation practices, among other factors. Co-benefits are also referred to as ancillary benefits.
Common but Differentiated Responsibilities and Respective Capabilities (CBDR-RC)
Common but Differentiated Responsibilities and Respective Capabilities (CBDRâRC) is a key principle in the United Nations Framework Convention on Climate Change (UNFCCC) that recognises the different capabilities and differing responsibilities of individual countries in tacking climate change. The principle of CBDRâRC is embedded in the 1992 UNFCCC treaty. The convention states: â⦠the global nature of climate change calls for the widest possible cooperation by all countries and their participation in an effective and appropriate international response, in accordance with their common but differentiated responsibilities and respective capabilities and their social and economic conditions.â Since then the CBDR-RC principle has guided the UN climate negotiations.
Conference of the Parties (COP)
The supreme body of UN conventions, such as the United Nations Framework Convention on Climate Change (UNFCCC), comprising parties with a right to vote that have ratified or acceded to the convention. See also United Nations Framework Convention on Climate Change (UNFCCC).
Confidence
The robustness of a finding based on the type, amount, quality and consistency of evidence (e.g., mechanistic understanding, theory, data, models, expert judgment) and on the degree of agreement across multiple lines of evidence. In this report, confidence is expressed qualitatively (Mastrandrea et al., 2010)12. See Section 1.6 for the list of confidence levels used. See also Agreement, Evidence, Likelihood and Uncertainty.
Conservation agriculture
A coherent group of agronomic and soil management practices that reduce the disruption of soil structure and biota.
Constant composition commitment
See Climate change commitment.
Constant emissions commitment
See Climate change commitment.
Coping capacity
The ability of people, institutions, organizations, and systems, using available skills, values, beliefs, resources, and opportunities, to address, manage, and overcome adverse conditions in the short to medium term. This glossary entry builds from the definition used in UNISDR (2009)13 and IPCC (2012a)14. See also Resilience.
Costâbenefit analysis
Monetary assessment of all negative and positive impacts associated with a given action. Costâbenefit analysis enables comparison of different interventions, investments or strategies and reveals how a given investment or policy effort pays off for a particular person, company or country. Costâbenefit analyses representing society’s point of view are important for climate change decision-making, but there are difficulties in aggregating costs and benefits across different actors and across timescales. See also Discounting.
Cost-effectiveness
A measure of the cost at which policy goal or outcome is achieved. The lower the cost the greater the cost-effectiveness.
Coupled Model Intercomparison Project (CMIP)
The Coupled Model Intercomparison Project (CMIP) is a climate modelling activity from the World Climate Research Programme (WCRP) which coordinates and archives climate model simulations based on shared model inputs by modelling groups from around the world. The CMIP3 multimodel data set includes projections using SRES scenarios. The CMIP5 data set includes projections using the Representative Concentration Pathways (RCPs). The CMIP6 phase involves a suite of common model experiments as well as an ensemble of CMIP-endorsed model intercomparison projects (MIPs).
Cumulative emissions
The total amount of emissions released over a specified period of time. See also Carbon budget, and Transient climate response to cumulative CO2 emissions (TCRE).