-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from nyunAI/submission
Submission
- Loading branch information
Showing
19 changed files
with
2,530 additions
and
1,883 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
import random | ||
import numpy as np | ||
import torch | ||
|
||
from datasets import load_dataset | ||
from torch.utils.data.dataset import Dataset | ||
|
||
def get_wikitext2(seq_len, tokenizer): | ||
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train') | ||
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test') | ||
return traindata, testdata | ||
|
||
def get_ptb(seq_len, tokenizer): | ||
traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train') | ||
valdata = load_dataset('ptb_text_only', 'penn_treebank', split='validation') | ||
return traindata, valdata | ||
|
||
class IndexDataset(Dataset): | ||
def __init__(self, tensors): | ||
self.tensors = tensors | ||
|
||
def __getitem__(self, index): | ||
return self.tensors[index] | ||
|
||
def __len__(self): | ||
return len(self.tensors) | ||
|
||
def process_data(samples, tokenizer, seq_len, field_name): | ||
test_ids = tokenizer("\n\n".join(samples[field_name]), return_tensors='pt').input_ids[0] | ||
test_ids_batch = [] | ||
nsamples = test_ids.numel() // seq_len | ||
|
||
for i in range(nsamples): | ||
batch = test_ids[(i * seq_len):((i + 1) * seq_len)] | ||
test_ids_batch.append(batch) | ||
test_ids_batch = torch.stack(test_ids_batch) | ||
return IndexDataset(tensors=test_ids_batch) | ||
|
||
|
||
def get_loaders_chunk(name, chunk, size, tokenizer, seq_len=2048, batch_size = 8): | ||
if 'wikitext2' in name: | ||
train_data, test_data = get_wikitext2(seq_len, tokenizer) | ||
num_samples = len(test_data) | ||
assert(size<1.0) | ||
num_eval = int(size*(num_samples)) | ||
start = chunk*num_eval | ||
end = min(start + num_eval, len(test_data)) | ||
print(f"Start {start} to {end}") | ||
test_dataset = process_data(test_data[start:end], tokenizer, seq_len, 'text') | ||
|
||
if 'ptb' in name: | ||
train_data, test_data = get_ptb(seq_len, tokenizer) | ||
test_dataset = process_data(test_data, tokenizer, seq_len, 'sentence') | ||
|
||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | ||
return train_data, test_loader | ||
|
||
def get_loaders_end(name, tokenizer, chunk = 1, size = 0.2, seq_len=2048, batch_size = 8): | ||
if 'wikitext2' in name: | ||
train_data, test_data = get_wikitext2(seq_len, tokenizer) | ||
num_samples = len(test_data) | ||
assert(size<1.0) | ||
num_eval = int(size*num_samples) | ||
start = chunk*num_eval | ||
print(f"Start {start} to {len(test_data)}") | ||
test_dataset = process_data(test_data[start:], tokenizer, seq_len, 'text') | ||
|
||
if 'ptb' in name: | ||
train_data, test_data = get_ptb(seq_len, tokenizer) | ||
test_dataset = process_data(test_data, tokenizer, seq_len, 'sentence') | ||
|
||
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) | ||
return train_data, test_loader |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
import torch | ||
import sys | ||
sys.path.append('../') | ||
import numpy as np | ||
import pandas as pd | ||
import torch.nn as nn | ||
from torch.utils.data import DataLoader | ||
import transformers | ||
from transformers import ( | ||
AutoModelForCausalLM, | ||
BitsAndBytesConfig, | ||
AutoTokenizer, | ||
DataCollatorForSeq2Seq, | ||
) | ||
from datasets import load_dataset | ||
from preprocess import get_combination | ||
from preprocess import get_bookcorpus | ||
import argparse | ||
from tqdm import tqdm | ||
from layers import ModuleInjection | ||
from lm_eval import evaluator | ||
from preprocess import * | ||
import json | ||
from dataset_ppl import get_wikitext2 | ||
|
||
parser = argparse.ArgumentParser("main") | ||
parser.add_argument("--layers", type=str, default="o_proj,q_proj,v_proj,k_proj,gate_proj,up_proj,down_proj") | ||
parser.add_argument("--dataset", type=str, default="piqa") | ||
parser.add_argument("--batch_size", type=int, default=512) | ||
parser.add_argument("--seq_len", type=int, default=128) | ||
parser.add_argument("--log_path", type=str, default="surgical_logs.txt") | ||
parser.add_argument("--algo", type=str, default="eigen") | ||
parser.add_argument("--weights_name", type=str, default="decomposed_model_mistral_combination.pt") | ||
parser.add_argument("--model", type=str, default="mistralai/Mistral-7B-v0.1") | ||
|
||
args = parser.parse_args() | ||
|
||
with open(args.log_path, "a") as file: | ||
file.write(json.dumps(str(args))) | ||
file.write("\n") | ||
|
||
|
||
base_model = AutoModelForCausalLM.from_pretrained( | ||
args.model, | ||
torch_dtype=torch.float32, | ||
device_map="cpu", | ||
trust_remote_code=True, | ||
# load_in_8bit=True, | ||
) | ||
|
||
|
||
|
||
decomposable_layers_base = [] | ||
max_rank = [] | ||
for name, l in base_model.named_modules(): | ||
if isinstance(l, nn.Linear): | ||
max_rank.append(int(l.weight.data.shape[0]*l.weight.data.shape[1]/(l.weight.data.shape[0]+l.weight.data.shape[1]))) | ||
for eligible_layer in args.layers: | ||
if eligible_layer in name: | ||
tokens = name.strip().split(".") | ||
layer = base_model | ||
for t in tokens[:-1]: | ||
if not t.isnumeric(): | ||
layer = getattr(layer, t) | ||
else: | ||
layer = layer[int(t)] | ||
|
||
decomposable_layers_base.append([layer, tokens[-1]]) | ||
break | ||
|
||
|
||
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained( | ||
args.model, | ||
trust_remote_code=True, | ||
torch_dtype="auto", | ||
) | ||
tokenizer.pad_token = tokenizer.eos_token | ||
|
||
data_collator = DataCollatorForSeq2Seq( | ||
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True | ||
) | ||
|
||
def tokenize(prompt, add_eos_token=True): | ||
result = tokenizer( | ||
prompt, | ||
truncation=True, | ||
max_length=args.seq_len, | ||
padding='max_length', | ||
return_tensors=None, | ||
) | ||
if ( | ||
result["input_ids"][-1] != tokenizer.eos_token_id | ||
and len(result["input_ids"]) < 2048 | ||
and add_eos_token | ||
): | ||
result["input_ids"].append(tokenizer.eos_token_id) | ||
result["attention_mask"].append(1) | ||
|
||
result["labels"] = result["input_ids"].copy() | ||
|
||
return result | ||
|
||
|
||
def generate_and_tokenize_prompt(data_point): | ||
full_prompt = data_point["text"] | ||
tokenized_full_prompt = tokenize(full_prompt) | ||
return tokenized_full_prompt | ||
|
||
|
||
# To run on Specific Dataset | ||
if args.dataset == 'wikitext2': | ||
dataset = get_wikitext2(tokenizer, seq_len = args.seq_len ) | ||
dataloader = DataLoader(dataset, batch_size = args.batch_size) | ||
|
||
#To run on Commonsense Reasoning Datasets | ||
elif args.dataset != 'combination' and args.dataset != 'bookcorp': | ||
dataset, _, _ = get_dataset(args.dataset) | ||
dataset = dataset.map(generate_and_tokenize_prompt) | ||
dataset = dataset.select_columns(["input_ids", "attention_mask"]) | ||
dataloader = DataLoader(dataset, collate_fn=data_collator, batch_size=args.batch_size) | ||
print("Done Loading Data") | ||
|
||
#To run on Book Corpora | ||
elif args.dataset == 'bookcorp': | ||
data = get_bookcorpus(tokenizer, args.batch_size, args.seq_len) | ||
|
||
#To run on Comb data | ||
elif args.dataset == 'combination': | ||
dataset, _, _ = get_combination(args.batch_size) | ||
dataset = dataset.map(generate_and_tokenize_prompt) | ||
dataset = dataset.select_columns(["input_ids", "attention_mask"]) | ||
dataloader = DataLoader(dataset, collate_fn=data_collator, batch_size=args.batch_size) | ||
|
||
else: | ||
print("Dataset Not Supported") | ||
exit() | ||
|
||
for index in tqdm(range(len(decomposable_layers_base))): | ||
parent_layer, last_token = decomposable_layers_base[index] | ||
setattr( | ||
parent_layer, | ||
last_token, | ||
ModuleInjection.make_decomposable( | ||
getattr(parent_layer, last_token), max_rank[index], args.algo | ||
), | ||
) | ||
|
||
for _, param in base_model.named_parameters(): | ||
param.requires_grad = False | ||
if(args.dataset == 'wikitext2'): | ||
for inputs in dataloader: | ||
_ = base_model(inputs) | ||
break | ||
|
||
elif(args.dataset!='bookcorp'): | ||
for inputs in dataloader: | ||
inputs = {k: inputs[k].to(base_model.device) for k in inputs} | ||
_ = base_model(**inputs) | ||
break | ||
else: | ||
_ = base_model(data) | ||
|
||
torch.save(base_model.half(),args.weights_name) |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.