-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
277 additions
and
190 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
import torch | ||
import sys | ||
sys.path.append('../') | ||
import numpy as np | ||
import gc | ||
import pandas as pd | ||
import torch.nn as nn | ||
from torch.utils.data import DataLoader | ||
import transformers | ||
from transformers import ( | ||
AutoModelForCausalLM, | ||
BitsAndBytesConfig, | ||
AutoTokenizer, | ||
TrainingArguments, | ||
T5ForConditionalGeneration, | ||
DataCollatorForSeq2Seq, | ||
) | ||
import copy | ||
from datasets import load_dataset | ||
from preprocess import get_combination | ||
from preprocess import get_bookcorpus | ||
from trainer import LocalTrainer | ||
import argparse | ||
from tqdm import tqdm | ||
from layers import ModuleInjection | ||
from lm_eval import evaluator | ||
from preprocess import * | ||
import json | ||
import time | ||
|
||
|
||
parser = argparse.ArgumentParser("main") | ||
parser.add_argument("--layers", type=str, default="o_proj,q_proj,v_proj,k_proj,gate_proj,up_proj,down_proj") | ||
parser.add_argument("--dataset", type=str, default="piqa") | ||
parser.add_argument("--batch_size", type=int, default=512) | ||
parser.add_argument("--seq_len", type=int, default=128) | ||
parser.add_argument("--log_path", type=str, default="surgical_logs.txt") | ||
parser.add_argument("--algo", type=str, default="eigen") | ||
parser.add_argument("--model", type=str, default="mistralai/Mistral-7B-v0.1") | ||
|
||
args = parser.parse_args() | ||
|
||
with open(args.log_path, "a") as file: | ||
file.write(json.dumps(str(args))) | ||
file.write("\n") | ||
|
||
|
||
base_model = AutoModelForCausalLM.from_pretrained( | ||
args.model, | ||
torch_dtype=torch.float32, | ||
device_map="cpu", | ||
trust_remote_code=True, | ||
# load_in_8bit=True, | ||
) | ||
|
||
|
||
|
||
decomposable_layers_base = [] | ||
max_rank = [] | ||
for name, l in base_model.named_modules(): | ||
if isinstance(l, nn.Linear): | ||
max_rank.append(int(l.weight.data.shape[0]*l.weight.data.shape[1]/(l.weight.data.shape[0]+l.weight.data.shape[1]))) | ||
for eligible_layer in args.layers: | ||
if eligible_layer in name: | ||
tokens = name.strip().split(".") | ||
layer = base_model | ||
for t in tokens[:-1]: | ||
if not t.isnumeric(): | ||
layer = getattr(layer, t) | ||
else: | ||
layer = layer[int(t)] | ||
|
||
decomposable_layers_base.append([layer, tokens[-1]]) | ||
break | ||
|
||
|
||
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained( | ||
args.model, | ||
trust_remote_code=True, | ||
torch_dtype="auto", | ||
) | ||
tokenizer.pad_token = tokenizer.eos_token | ||
|
||
data_collator = DataCollatorForSeq2Seq( | ||
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True | ||
) | ||
|
||
def tokenize(prompt, add_eos_token=True): | ||
result = tokenizer( | ||
prompt, | ||
truncation=True, | ||
max_length=args.seq_len, | ||
padding='max_length', | ||
return_tensors=None, | ||
) | ||
if ( | ||
result["input_ids"][-1] != tokenizer.eos_token_id | ||
and len(result["input_ids"]) < 2048 | ||
and add_eos_token | ||
): | ||
result["input_ids"].append(tokenizer.eos_token_id) | ||
result["attention_mask"].append(1) | ||
|
||
result["labels"] = result["input_ids"].copy() | ||
|
||
return result | ||
|
||
|
||
def generate_and_tokenize_prompt(data_point): | ||
full_prompt = data_point["text"] | ||
tokenized_full_prompt = tokenize(full_prompt) | ||
return tokenized_full_prompt | ||
|
||
|
||
# To run on Specific Dataset | ||
if args.dataset == 'wikitext2': | ||
dataset = get_wikitext2(tokenizer, seq_len = args.seq_len ) | ||
dataloader = DataLoader(dataset, batch_size = args.batch_size) | ||
|
||
elif args.dataset != 'combination' and args.dataset != 'bookcorp': | ||
dataset, _, _ = get_dataset(args.dataset) | ||
dataset = dataset.map(generate_and_tokenize_prompt) | ||
dataset = dataset.select_columns(["input_ids", "attention_mask"]) | ||
dataloader = DataLoader(dataset, collate_fn=data_collator, batch_size=args.batch_size) | ||
print("Done Loading Data") | ||
|
||
#To run on Book Corpora | ||
elif args.dataset == 'bookcorp': | ||
data = get_bookcorpus(tokenizer,args.batch_size,128) | ||
|
||
#To run on Comb data | ||
elif args.dataset == 'combination': | ||
dataset, _, _ = get_combination(args.batch_size) | ||
dataset = dataset.map(generate_and_tokenize_prompt) | ||
dataset = dataset.select_columns(["input_ids", "attention_mask"]) | ||
dataloader = DataLoader(dataset, collate_fn=data_collator, batch_size=args.batch_size) | ||
|
||
else: | ||
print("Dataset Not Supported") | ||
exit() | ||
|
||
for index in tqdm(range(len(decomposable_layers_base))): | ||
parent_layer, last_token = decomposable_layers_base[index] | ||
setattr( | ||
parent_layer, | ||
last_token, | ||
ModuleInjection.make_decomposable( | ||
getattr(parent_layer, last_token), max_rank[index], args.algo | ||
), | ||
) | ||
|
||
for _, param in base_model.named_parameters(): | ||
param.requires_grad = False | ||
if(args.dataset == 'wikitext2'): | ||
for inputs in dataloader: | ||
_ = base_model(inputs) | ||
break | ||
|
||
elif(args.dataset!='bookcorp'): | ||
for inputs in dataloader: | ||
print(inputs['input_ids'].shape) | ||
inputs = {k: inputs[k].to(base_model.device) for k in inputs} | ||
_ = base_model(**inputs) | ||
break | ||
else: | ||
_ = base_model(data) | ||
|
||
torch.save(base_model.half(),f"decomposed_model_mistral_{args.dataset}.pt") |
Oops, something went wrong.