Pandas DataFrame ã§åã®ååã夿´ããæ¹æ³
-
DataFrame.columns
ã¡ã½ããã使ç¨ã㦠PandasDataFrame
ã®åã®ååã夿´ãã -
DataFrame.rename()
ã¡ã½ããã使ç¨ã㦠PandasDataFrame
ã®åã®ååã夿´ãã -
DataFrame.set_axis()
ã¡ã½ããã使ç¨ã㦠PandasDataFrame
ã®åã®ååã夿´ãã

å¤ãã®å ´åããã¼ã¿åæã§ååãæä½ããå¿
è¦ãããã¾ãããã®è¨äºã§ã¯ããã§ã«å®ç¾©ããã¦ãã panadas DataFrame
ã®ååãæä½/åå夿´ããããã®ãã¾ãã¾ãªæ¹æ³ãæ¢ãã¾ãã
DataFrame.columns
ã¡ã½ããã使ç¨ã㦠Pandas DataFrame
ã®åã®ååã夿´ãã
ãã®æ¹æ³ã¯é常ã«ç°¡åã§ãåã®ååãç´æ¥å¤æ´ã§ãã¾ããæ¬¡ã®ããã« DataFrame.columns
屿§ã使ç¨ãã¦æ°ããååã®ãªã¹ããå²ãå½ã¦ããã¨ãã§ãã¾ãï¼
import pandas as pd
example_df = pd.DataFrame(
[["John", 20, 45], ["Peter", 21, 62], ["Scot", 25, 68]],
index=[0, 1, 2],
columns=["Name", "Age", "Marks"],
)
print "\nOriginal DataFrame"
print (pd.DataFrame(example_df))
example_df.columns = ["Name", "Age", "Roll_no"]
print "\nModified DataFrame"
print (pd.DataFrame(example_df))
åºåï¼
Original DataFrame
Name Age Marks
0 John 20 45
1 Peter 21 62
2 Scot 25 68
Modified DataFrame
Name Age Roll_no
0 John 20 45
1 Peter 21 62
2 Scot 25 68
ãã®ã¢ããã¼ãã® 1ã¤ã®æ¬ ç¹ã¯ãåã®ååã 1ã¤ã ã夿´ããå¿ è¦ãããå ´åã§ããåå ¨ä½ããªã¹ãããå¿ è¦ããããã¨ã§ããåã®æ°ãå¤ãå ´åãåãªã¹ãå ¨ä½ãæå®ãããã¨ã¯å®ç¨çã§ã¯ããã¾ããã
DataFrame.rename()
ã¡ã½ããã使ç¨ã㦠Pandas DataFrame
ã®åã®ååã夿´ãã
åã®ã¡ã½ããã®ä»£æ¿ã¢ããã¼ãã¯ãDataFrame.rename()
ã¡ã½ããã使ç¨ãããã¨ã§ãããã®æ¹æ³ã¯ããã¹ã¦ã®åã®ååã夿´ããå¿
è¦ããªãå ´åã«é常ã«ä¾¿å©ã§ãã
å¤ãååããã¼ãæ°ããååãå¤ã¨ãã¦æå®ããå¿ è¦ãããã¾ãã
import pandas as pd
example_df = pd.DataFrame(
[["John", 20, 45, 78], ["Peter", 21, 62, 68], ["Scot", 25, 68, 95]],
index=[0, 1, 2],
columns=["Name", "Age", "Marks", "Roll_no"],
)
print "\nOriginal DataFrame"
print (pd.DataFrame(example_df))
example_df.rename(columns={"Marks": "Roll_no", "Roll_no": "Marks"}, inplace=True)
print "\nModified DataFrame"
print (pd.DataFrame(example_df))
åºåï¼
Original DataFrame
Name Age Marks Roll_no
0 John 20 45 78
1 Peter 21 62 68
2 Scot 25 68 95
Modified DataFrame
Name Age Roll_no Marks
0 John 20 45 78
1 Peter 21 62 68
2 Scot 25 68 95
ãã®æ¹æ³ã®æãéè¦ãªå©ç¹ã¯ãå¿
è¦ãªæ°ã®åãæå®ã§ãããã¨ã§ããç¹å®ã®åã®ååã夿´ããå¿
è¦ãããå ´åã«é常ã«å¹æçã§ããã以åã®æ¹æ³ã¨ã¯ç°ãªããDataFrame
ã®åãªã¹ãå
¨ä½ããªã¹ãããå¿
è¦ã¯ããã¾ããã
DataFrame.rename()
颿°å¼ã³åºãã§ãinplace
ãã©ã¡ã¼ã¿ã¼ã True
ã«æå®ãããã¨ã«æ°ä»ãã§ããããinplace
ãã©ã¡ã¼ã¿ã¯ããã©ã«ãã§ False
ã§ãæ°ãã Pandas DataFrame
ãè¿ããã©ãããæå®ãã¾ãã
True
ã¨æå®ããã¨ã颿°å¼ã³åºãã¯æ°ãã Pandas DataFrame
ãè¿ãããæ¢åã® DataFrame
ã夿´ãã¾ãã
DataFrame.set_axis()
ã¡ã½ããã使ç¨ã㦠Pandas DataFrame
ã®åã®ååã夿´ãã
Pandas ã®åã®ååã夿´ãããã 1ã¤ã®ä¾¿å©ãªæ¹æ³ã¯ DataFrame
ã§ãããã®ã¡ã½ããã使ç¨ããã¨ãã¯ãåãªã¹ãå
¨ä½ãæå®ããå¿
è¦ãããã¾ãã
import pandas as pd
example_df = pd.DataFrame(
[["John", 20, 45, 78], ["Peter", 21, 62, 68], ["Scot", 25, 68, 95]],
index=[0, 1, 2],
columns=["Name", "Age", "Marks", "Roll_no"],
)
print "\nOriginal DataFrame"
print (pd.DataFrame(example_df))
example_df.set_axis(["Name", "Age", "Roll_no", "Marks"], axis="columns", inplace=True)
print "\nModified DataFrame"
print (pd.DataFrame(example_df))
åºåï¼
Original DataFrame
Name Age Marks Roll_no
0 John 20 45 78
1 Peter 21 62 68
2 Scot 25 68 95
Modified DataFrame
Name Age Roll_no Marks
0 John 20 45 78
1 Peter 21 62 68
2 Scot 25 68 95
é¢é£è¨äº - Pandas DataFrame
- Pandas DataFrame ã®åãããã¼ããªã¹ãã¨ãã¦åå¾ããæ¹æ³
- Pandas DataFrame åãåé¤ããæ¹æ³
- Pandas ã§ DataFrame åãæ¥æã«å¤æããæ¹æ³
- Pandas DataFrame ã§æµ®åå°æ°ç¹æ° float ãæ´æ° int ã«å¤æããæ¹æ³
- Pandas DataFrame ã 1ã¤ã®åã®å¤ã§ä¸¦ã¹æ¿ããæ¹æ³
- Pandas group-by 㨠Sum ã®éè¨ãåå¾ããæ¹æ³