Crystal Field Theory (CFT) is a model that describes the breaking of degeneracies of electron orbital states, usually d or f orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used to describe various spectroscopies of transition metalcoordination complexes, in particular optical spectra (colors). CFT successfully accounts for some magnetic properties, colours, hydrationenthalpies, and spinel structures of transition metal complexes, but it does not attempt to describe bonding. CFT was developed by physicists Hans Bethe and John Hasbrouck van Vleck in the 1930s. CFT was subsequently combined with molecular orbital theory to form the more realistic and complex ligand field theory (LFT), which delivers insight into the process of chemical bonding in transition metal complexes.
Overview of crystal field theory analysis
According to Crystal Field Theory, the interaction between a transition metal and ligands arises from the attraction between the positively charged metal cation and negative charge on the non-bonding electrons of the ligand. The theory is developed by considering energy changes of the five degenerated-orbitals upon being surrounded by an array of point charges consisting of the ligands. As a ligand approaches the metal ion, the electrons from the ligand will be closer to some of the d-orbitals and farther away from others causing a loss of degeneracy. The electrons in the d-orbitals and those in the ligand repel each other due to repulsion between like charges. Thus the d-electrons closer to the ligands will have a higher energy than those further away which results in the d-orbitals splitting in energy. This splitting is affected by the following factors:
In physics, a field is a physical quantity that has a value for each point in space and time. For example, on a weather map, the surface wind velocity is described by assigning a vector to each point on a map. Each vector represents the speed and direction of the movement of air at that point. As another example, an electric field can be thought of as a "condition in space" emanating from an electric charge and extending throughout the whole of space. When a test electric charge is placed in this electric field, the particle accelerates due to a force. Physicists have found the notion of a field to be of such practical utility for the analysis of forces that they have come to think of a force as due to a field.
In the modern framework of the quantum theory of fields, even without referring to a test particle, a field occupies space, contains energy, and its presence eliminates a true vacuum.
This led physicists to consider electromagnetic fields to be a physical entity, making the field concept a supporting paradigm of the edifice of modern physics. "The fact that the electromagnetic field can possess momentum and energy makes it very real... a particle makes a field, and a field acts on another particle, and the field has such familiar properties as energy content and momentum, just as particles can have". In practice, the strength of most fields has been found to diminish with distance to the point of being undetectable. For instance the strength of many relevant classical fields, such as the gravitational field in Newton's theory of gravity or the electrostatic field in classical electromagnetism, is inversely proportional to the square of the distance from the source (i.e. they follow the Gauss's law). One consequence is that the Earth's gravitational field quickly becomes undetectable on cosmic scales.
Field theory is a psychological theory which examines patterns of interaction between the individual and the total field, or environment. The concept first made its appearance in psychology with roots to the holistic perspective of Gestalt theories. It was developed by Kurt Lewin, a Gestalt psychologist, in the 1940s.
Lewin’s field theory can be expressed by a formula: B = f(p,e), meaning that behavior (B) is a function of the person (p) and her environment (e).
History
Early philosophers believed the body to have a rational, inner nature that helped guide our thoughts and bodies. This intuitive force, our soul, was viewed as having supreme control over our entire being. However, this view changed during the intellectual revolution of the 17th century. The mind versus the body was a forever evolving concept that received great attention from the likes of Descartes, Locke and Kant. From once believing that the mind and body interact, to thinking the mind is completely separate from the body, rationalist and empirical views were deeply rooted in the understanding of this phenomenon. Field Theory emerged when Lewin considered a person's behavior to consist of many different interactions. He believed people to have dynamic thoughts, forces, and emotions that shifted their behavior to reflect their present state.
Theory is a contemplative and rational type of abstract or generalizing thinking, or the results of such thinking. Depending on the context, the results might for example include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several different related meanings. A theory is not the same as a hypothesis. A theory provides an explanatory framework for some observation, and from the assumptions of the explanation follows a number of possible hypotheses that can be tested in order to provide support for, or challenge, the theory.
A theory can be normative (or prescriptive), meaning a postulation about what ought to be. It provides "goals, norms, and standards". A theory can be a body of knowledge, which may or may not be associated with particular explanatory models. To theorize is to develop this body of knowledge.
As already in Aristotle's definitions, theory is very often contrasted to "practice" (from Greek praxis, πρᾶξις) a Greek term for "doing", which is opposed to theory because pure theory involves no doing apart from itself. A classical example of the distinction between "theoretical" and "practical" uses the discipline of medicine: medical theory involves trying to understand the causes and nature of health and sickness, while the practical side of medicine is trying to make people healthy. These two things are related but can be independent, because it is possible to research health and sickness without curing specific patients, and it is possible to cure a patient without knowing how the cure worked.
The game of chess is commonly divided into three phases: the opening, middlegame, and endgame. There is a large body of theory regarding how the game should be played in each of these phases, especially the opening and endgame. Those who write about chess theory, who are often but not necessarily also eminent players, are referred to as "theorists" or "theoreticians".
"Opening theory" commonly refers to consensus, broadly represented by current literature on the openings. "Endgame theory" consists of statements regarding specific positions, or positions of a similar type, though there are few universally applicable principles. "Middlegame theory" often refers to maxims or principles applicable to the middlegame. The modern trend, however, is to assign paramount importance to analysis of the specific position at hand rather than to general principles.
The development of theory in all of these areas has been assisted by the vast literature on the game. In 1913, preeminent chess historian H. J. R. Murray wrote in his 900-page magnum opus A History of Chess
that, "The game possesses a literature which in contents probably exceeds that of all other games combined." He estimated that at that time the "total number of books on chess, chess magazines, and newspapers devoting space regularly to the game probably exceeds 5,000". In 1949, B. H. Wood opined that the number had increased to about 20,000.David Hooper and Kenneth Whyld wrote in 1992 that, "Since then there has been a steady increase year by year of the number of new chess publications. No one knows how many have been printed..." The world's largest chess library, the John G. White Collection at the Cleveland Public Library, contains over 32,000 chess books and serials, including over 6,000 bound volumes of chess periodicals. Chess players today also avail themselves of computer-based sources of information.
A series in baseball terminology refers to two or more consecutive games played between the same two teams.
Historically and currently, professional baseball season revolves around a schedule of series, each typically lasting three or four games. In college baseball, there are typically midweek single games and weekend series, with all conference games in series of three games, with the second and fourth rounds of the NCAA Division I playoffs being best two out of three game series. These series are often geographically grouped, allowing teams to visit adjacent cities conveniently. This is known in baseball as a road trip, and a team can be on the road for up to 20 games, or 4-5 series. When a team hosts series at home, it is called a homestand. During the Major League Baseball Postseason, there is only one wild card game (one in each League). The remainder of the Postseason consists of the League Division Series, which is a best-of-5 series, and the League Championship Series, which is a best-of-7 series, followed by the World Series, a best-of-7 series to determine the Major League Baseball Champion.
The channel was launched on January 31, 2000 as Séries+ at 6pm EST.
On January 18, 2008, a joint venture between Canwest and Goldman Sachs Capital Partners known as CW Media purchased AAC and gained AAC's interest in Séries+.
On October 27, 2010, Shaw Communications completed its acquisition of Canwest and Goldman Sachs' interest in CW Media, giving it control of CW Media's 50% interest in Séries+.
On March 4, 2013, Corus Entertainment announced that it would acquire Astral Media's stakes in Séries+ and Historia, as well as several other properties, under separate transactions with the two companies. The purchase was tied to Bell Media's pending takeover of Astral Media; an earlier proposal had been rejected by the CRTC in October 2012 due to concerns surrounding its total market share following the merger, but was restructured under the condition that the companies divest certain media properties. In a separate deal, Corus also acquired Shaw's interests in Séries+ and Historia, giving it full ownership. The deals were approved by the CRTC on December 20, 2013 and Corus officially become the full owner of the channel on January 1, 2014.
20 1 Crystal-Field Theory - i Irving-Williams Series
published: 24 Nov 2020
Irving William Series. #Irvingwilliamseries #chemistry #inorganic chemistry #chemistry
published: 09 Jan 2023
20 1 Crystal-Field Theory - d Thermochemical Correlations
published: 23 Nov 2020
Crystal Field Theory - Part 5: Irving Williams Series, Application of CFT, Spinel
This video includes discussion on
1) Conflict between Stabilization due to Jahn Teller Distortion and the Chelate Geometrical Requirement.
2) Irving William Series.
3) Application of CFT - Explanation for variation of ionic radii of Transition Metal Ions.
4) Explanation for Anomalous Variation of Lattice Enthalpy for Transition Metal Ions using CFT.
5) Explanation for Anomalous Variation of Solvation Energy for Transition Metal Ions using CFT.
6) Explanation for Anomalous Variation of Redox Potential for Transition Metal Ions using CFT.
7) Explanation for Existence of Two Types of Spinel.
8) Determination of Type of Spinel A Mixed Metal Ion AB2O4 May Adopt Based on CFSE.
published: 12 May 2021
Irving -Williams Series Coordination compounds@chemistrybaba
Irving -Williams Series Coordination compounds@chemistrybaba#sumitringwal
published: 31 Jan 2023
Irving Williams series | CSIR-NET | SET | GATE | M.sc | B.sc | 12th | NEET | NCERT
This topic is important for CSIR-NET,SET,GATE,M.sc ,B.sc ,12th,NEET,NCERT
Birch reduction in easy way all reactions are covered
https://youtu.be/TRXawLXEY6I
https://youtu.be/xCOxwWb9BBM
Lossen rearrangement
https://youtu.be/quO2i0uWGEc
https://youtu.be/upFR1HV4vZM
https://youtu.be/vtKyickIcOA
https://youtu.be/7EDrKWsTe0s
https://youtu.be/IUBxE9o-XRw
https://youtu.be/T6RQE7HY15I
published: 19 Oct 2020
Q51 CY 2016
Gate Preparation- Chemistry
published: 26 Dec 2022
Water Exchange Series | Ligand Exchange | Irving–Williams series | CSIR NET | GATE | IIT JAM
In this class Anup Parali Will Provide in complete Discussion on Irving–Williams series. all problems will be discussed in detail and would be helpful for aspirants preparing for the IIT JAM exam. Learners at any stage of their preparation will be benefited by the class.
published: 10 Jan 2021
CSIR NET DEC 2023 | Coordination Chemistry | L22: The Irving–Williams series | Nadeem Sir
CSIR NET DEC 2023 | Coordination Chemistry | L22: The Irving–Williams series | Nadeem Sir
🎯Join Nadeem Sir Telegram Channel - https://t.me/NadeemSir_Testbook
🎯Faculty Coupon Code : NADEEM
📲Register For CSIR NET Early Updates - https://forms.gle/mqa5N6VqB71aaNgK6
That's impressive! Nadeem Sir must have a wealth of knowledge and experience in the field of Chemical Sciences. With 7+ years of teaching experience and having selected over 1000+ students in exam, he is likely to have honed his teaching skills and developed effective strategies to convey complex concepts to his students.
CSIR NET (Council of Scientific and Industrial Research National Eligibility Test) is a prestigious examination in India that tests the eligibility of candidates for lectureships and research fellowships in vari...
published: 21 Jul 2023
A Série Nefelauxética e A Série de Irving-Williams
Ana Claudia Nogueira Soares e Alef Julio Oliveira.
This video includes discussion on
1) Conflict between Stabilization due to Jahn Teller Distortion and the Chelate Geometrical Requirement.
2) Irving William Ser...
This video includes discussion on
1) Conflict between Stabilization due to Jahn Teller Distortion and the Chelate Geometrical Requirement.
2) Irving William Series.
3) Application of CFT - Explanation for variation of ionic radii of Transition Metal Ions.
4) Explanation for Anomalous Variation of Lattice Enthalpy for Transition Metal Ions using CFT.
5) Explanation for Anomalous Variation of Solvation Energy for Transition Metal Ions using CFT.
6) Explanation for Anomalous Variation of Redox Potential for Transition Metal Ions using CFT.
7) Explanation for Existence of Two Types of Spinel.
8) Determination of Type of Spinel A Mixed Metal Ion AB2O4 May Adopt Based on CFSE.
This video includes discussion on
1) Conflict between Stabilization due to Jahn Teller Distortion and the Chelate Geometrical Requirement.
2) Irving William Series.
3) Application of CFT - Explanation for variation of ionic radii of Transition Metal Ions.
4) Explanation for Anomalous Variation of Lattice Enthalpy for Transition Metal Ions using CFT.
5) Explanation for Anomalous Variation of Solvation Energy for Transition Metal Ions using CFT.
6) Explanation for Anomalous Variation of Redox Potential for Transition Metal Ions using CFT.
7) Explanation for Existence of Two Types of Spinel.
8) Determination of Type of Spinel A Mixed Metal Ion AB2O4 May Adopt Based on CFSE.
This topic is important for CSIR-NET,SET,GATE,M.sc ,B.sc ,12th,NEET,NCERT
Birch reduction in easy way all reactions are covered
https://youtu.be/TRXawLXEY6I
...
This topic is important for CSIR-NET,SET,GATE,M.sc ,B.sc ,12th,NEET,NCERT
Birch reduction in easy way all reactions are covered
https://youtu.be/TRXawLXEY6I
https://youtu.be/xCOxwWb9BBM
Lossen rearrangement
https://youtu.be/quO2i0uWGEc
https://youtu.be/upFR1HV4vZM
https://youtu.be/vtKyickIcOA
https://youtu.be/7EDrKWsTe0s
https://youtu.be/IUBxE9o-XRw
https://youtu.be/T6RQE7HY15I
This topic is important for CSIR-NET,SET,GATE,M.sc ,B.sc ,12th,NEET,NCERT
Birch reduction in easy way all reactions are covered
https://youtu.be/TRXawLXEY6I
https://youtu.be/xCOxwWb9BBM
Lossen rearrangement
https://youtu.be/quO2i0uWGEc
https://youtu.be/upFR1HV4vZM
https://youtu.be/vtKyickIcOA
https://youtu.be/7EDrKWsTe0s
https://youtu.be/IUBxE9o-XRw
https://youtu.be/T6RQE7HY15I
In this class Anup Parali Will Provide in complete Discussion on Irving–Williams series. all problems will be discussed in detail and would be helpful for aspi...
In this class Anup Parali Will Provide in complete Discussion on Irving–Williams series. all problems will be discussed in detail and would be helpful for aspirants preparing for the IIT JAM exam. Learners at any stage of their preparation will be benefited by the class.
In this class Anup Parali Will Provide in complete Discussion on Irving–Williams series. all problems will be discussed in detail and would be helpful for aspirants preparing for the IIT JAM exam. Learners at any stage of their preparation will be benefited by the class.
CSIR NET DEC 2023 | Coordination Chemistry | L22: The Irving–Williams series | Nadeem Sir
🎯Join Nadeem Sir Telegram Channel - https://t.me/NadeemSir_Testbook
🎯F...
CSIR NET DEC 2023 | Coordination Chemistry | L22: The Irving–Williams series | Nadeem Sir
🎯Join Nadeem Sir Telegram Channel - https://t.me/NadeemSir_Testbook
🎯Faculty Coupon Code : NADEEM
📲Register For CSIR NET Early Updates - https://forms.gle/mqa5N6VqB71aaNgK6
That's impressive! Nadeem Sir must have a wealth of knowledge and experience in the field of Chemical Sciences. With 7+ years of teaching experience and having selected over 1000+ students in exam, he is likely to have honed his teaching skills and developed effective strategies to convey complex concepts to his students.
CSIR NET (Council of Scientific and Industrial Research National Eligibility Test) is a prestigious examination in India that tests the eligibility of candidates for lectureships and research fellowships in various science disciplines, including Chemical Sciences. Being a faculty member for CSIR NET Chemical Sciences indicates that Nadeem Sir has a strong grasp of the subject matter and is well-versed in the topics covered by the exam.
💡You can enroll in a Testbook SuperCoaching subscription and get the following exclusive benefits
▪️ 10+ Courses by Super Teachers
▪️ 800+ Live Class by Experts
▪️ 250+Study Notes
▪️ 2400+ Mock Tests
________________________________________________________________________________________
What is SuperCoaching?
The Biggest disruption awaits you at SuperCoaching. It is a one-stop CSIR NET Chemical Science preparation platform where India’s top CSIR NET faculties from reputed coaching institutes teach. The objective of SuperCoaching is to cover the entire syllabus of the CSIR NET exam in a strategic manner. SuperCoaching is an instrumental tool that you can utilize in order to crack the CSIR NET exam.
______________________________________________________________
✉️For Admission or Support Queries, feel free to call us at 1800 203 0577 or email us at [email protected]
________________________________________________________________________________________
#testbookcsirnet2023
#nadeemsir
#nadeemsirclasses
#rajnishsircsirnet
#chemicalsciencecsirnet
#csirnetchemicalscience
CSIR NET DEC 2023 | Coordination Chemistry | L22: The Irving–Williams series | Nadeem Sir
🎯Join Nadeem Sir Telegram Channel - https://t.me/NadeemSir_Testbook
🎯Faculty Coupon Code : NADEEM
📲Register For CSIR NET Early Updates - https://forms.gle/mqa5N6VqB71aaNgK6
That's impressive! Nadeem Sir must have a wealth of knowledge and experience in the field of Chemical Sciences. With 7+ years of teaching experience and having selected over 1000+ students in exam, he is likely to have honed his teaching skills and developed effective strategies to convey complex concepts to his students.
CSIR NET (Council of Scientific and Industrial Research National Eligibility Test) is a prestigious examination in India that tests the eligibility of candidates for lectureships and research fellowships in various science disciplines, including Chemical Sciences. Being a faculty member for CSIR NET Chemical Sciences indicates that Nadeem Sir has a strong grasp of the subject matter and is well-versed in the topics covered by the exam.
💡You can enroll in a Testbook SuperCoaching subscription and get the following exclusive benefits
▪️ 10+ Courses by Super Teachers
▪️ 800+ Live Class by Experts
▪️ 250+Study Notes
▪️ 2400+ Mock Tests
________________________________________________________________________________________
What is SuperCoaching?
The Biggest disruption awaits you at SuperCoaching. It is a one-stop CSIR NET Chemical Science preparation platform where India’s top CSIR NET faculties from reputed coaching institutes teach. The objective of SuperCoaching is to cover the entire syllabus of the CSIR NET exam in a strategic manner. SuperCoaching is an instrumental tool that you can utilize in order to crack the CSIR NET exam.
______________________________________________________________
✉️For Admission or Support Queries, feel free to call us at 1800 203 0577 or email us at [email protected]
________________________________________________________________________________________
#testbookcsirnet2023
#nadeemsir
#nadeemsirclasses
#rajnishsircsirnet
#chemicalsciencecsirnet
#csirnetchemicalscience
This video includes discussion on
1) Conflict between Stabilization due to Jahn Teller Distortion and the Chelate Geometrical Requirement.
2) Irving William Series.
3) Application of CFT - Explanation for variation of ionic radii of Transition Metal Ions.
4) Explanation for Anomalous Variation of Lattice Enthalpy for Transition Metal Ions using CFT.
5) Explanation for Anomalous Variation of Solvation Energy for Transition Metal Ions using CFT.
6) Explanation for Anomalous Variation of Redox Potential for Transition Metal Ions using CFT.
7) Explanation for Existence of Two Types of Spinel.
8) Determination of Type of Spinel A Mixed Metal Ion AB2O4 May Adopt Based on CFSE.
This topic is important for CSIR-NET,SET,GATE,M.sc ,B.sc ,12th,NEET,NCERT
Birch reduction in easy way all reactions are covered
https://youtu.be/TRXawLXEY6I
https://youtu.be/xCOxwWb9BBM
Lossen rearrangement
https://youtu.be/quO2i0uWGEc
https://youtu.be/upFR1HV4vZM
https://youtu.be/vtKyickIcOA
https://youtu.be/7EDrKWsTe0s
https://youtu.be/IUBxE9o-XRw
https://youtu.be/T6RQE7HY15I
In this class Anup Parali Will Provide in complete Discussion on Irving–Williams series. all problems will be discussed in detail and would be helpful for aspirants preparing for the IIT JAM exam. Learners at any stage of their preparation will be benefited by the class.
CSIR NET DEC 2023 | Coordination Chemistry | L22: The Irving–Williams series | Nadeem Sir
🎯Join Nadeem Sir Telegram Channel - https://t.me/NadeemSir_Testbook
🎯Faculty Coupon Code : NADEEM
📲Register For CSIR NET Early Updates - https://forms.gle/mqa5N6VqB71aaNgK6
That's impressive! Nadeem Sir must have a wealth of knowledge and experience in the field of Chemical Sciences. With 7+ years of teaching experience and having selected over 1000+ students in exam, he is likely to have honed his teaching skills and developed effective strategies to convey complex concepts to his students.
CSIR NET (Council of Scientific and Industrial Research National Eligibility Test) is a prestigious examination in India that tests the eligibility of candidates for lectureships and research fellowships in various science disciplines, including Chemical Sciences. Being a faculty member for CSIR NET Chemical Sciences indicates that Nadeem Sir has a strong grasp of the subject matter and is well-versed in the topics covered by the exam.
💡You can enroll in a Testbook SuperCoaching subscription and get the following exclusive benefits
▪️ 10+ Courses by Super Teachers
▪️ 800+ Live Class by Experts
▪️ 250+Study Notes
▪️ 2400+ Mock Tests
________________________________________________________________________________________
What is SuperCoaching?
The Biggest disruption awaits you at SuperCoaching. It is a one-stop CSIR NET Chemical Science preparation platform where India’s top CSIR NET faculties from reputed coaching institutes teach. The objective of SuperCoaching is to cover the entire syllabus of the CSIR NET exam in a strategic manner. SuperCoaching is an instrumental tool that you can utilize in order to crack the CSIR NET exam.
______________________________________________________________
✉️For Admission or Support Queries, feel free to call us at 1800 203 0577 or email us at [email protected]
________________________________________________________________________________________
#testbookcsirnet2023
#nadeemsir
#nadeemsirclasses
#rajnishsircsirnet
#chemicalsciencecsirnet
#csirnetchemicalscience
Crystal Field Theory (CFT) is a model that describes the breaking of degeneracies of electron orbital states, usually d or f orbitals, due to a static electric field produced by a surrounding charge distribution (anion neighbors). This theory has been used to describe various spectroscopies of transition metalcoordination complexes, in particular optical spectra (colors). CFT successfully accounts for some magnetic properties, colours, hydrationenthalpies, and spinel structures of transition metal complexes, but it does not attempt to describe bonding. CFT was developed by physicists Hans Bethe and John Hasbrouck van Vleck in the 1930s. CFT was subsequently combined with molecular orbital theory to form the more realistic and complex ligand field theory (LFT), which delivers insight into the process of chemical bonding in transition metal complexes.
Overview of crystal field theory analysis
According to Crystal Field Theory, the interaction between a transition metal and ligands arises from the attraction between the positively charged metal cation and negative charge on the non-bonding electrons of the ligand. The theory is developed by considering energy changes of the five degenerated-orbitals upon being surrounded by an array of point charges consisting of the ligands. As a ligand approaches the metal ion, the electrons from the ligand will be closer to some of the d-orbitals and farther away from others causing a loss of degeneracy. The electrons in the d-orbitals and those in the ligand repel each other due to repulsion between like charges. Thus the d-electrons closer to the ligands will have a higher energy than those further away which results in the d-orbitals splitting in energy. This splitting is affected by the following factors: