Read Exercise 2.56 ~ Solution
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp)
(let ((base (base exp))
(exponent (exponent exp)))
(make-product exponent
(make-product (make-exponentiation base
(make-sum exponent -1))
(deriv base var)))))
(else
(error "unknown expression type -- DERIV" exp))))
(define (make-exponentiation base exponent)
(cond ((=number? base 0) 0)
((=number? exponent 0) 1)
((=number? exponent 1) base)
(else (list '** base exponent))))
(define base cadr)
(define exponent caddr)
(define (exponentiation? x)
(and (pair? x)
(eq? (car x) '**)))