Displayed above is a screenshot of the code review tool. The green line coloring is the standard diff coloring for added lines. The orange and lighter green coloring on the line numbers is the coverage information. We use light green for covered lines, orange for non-covered lines and white for non-instrumented lines.

It’s important to note that we surface the coverage information before the commit is submitted to the codebase, because this is the time when engineers are most likely to be interested in improving it.

Results


One of the main benefits of working at Google is the scale at which we operate. We have been running the coverage measurement system for some time now and we have collected data for more than 650 different projects, spanning 100,000+ commits. We have a significant amount of data for C++, Java, Python, Go and JavaScript code.

I am happy to say that we can share some preliminary results with you today:


The chart above is the histogram of average values of measured absolute coverage across Google. The median (50th percentile) code coverage is 78%, the 75th percentile 85% and 90th percentile 90%. We believe that these numbers represent a very healthy codebase.

We have also found it very interesting that there are significant differences between languages:

C++ Java Go JavaScript Python
56.6% 61.2% 63.0% 76.9% 84.2%


The table above shows the total coverage of all analyzed code for each language, averaged over the past quarter. We believe that the large difference is due to structural, paradigm and best practice differences between languages and the more precise ability to measure coverage in certain languages.

Note that these numbers should not be interpreted as guidelines for a particular language, the aggregation method used is too simple for that. Instead this finding is simply a data point for any future research that analyzes samples from a single programming language.

The feedback from our fellow engineers was overwhelmingly positive. The most loved feature was surfacing the coverage information during code review time. This early surfacing of coverage had a statistically significant impact: our initial analysis suggests that it increased coverage by 10% (averaged across all commits).

Future work


We are aware that there are a few problems with the dataset we collected. In particular, the individual tools we use to measure coverage are not perfect. Large integration tests, end to end tests and UI tests are difficult to instrument, so large parts of code exercised by such tests can be misreported as non-covered.

We are working on improving the tools, but also analyzing the impact of unit tests, integration tests and other types of tests individually.

In addition to languages, we will also investigate other factors that might influence coverage, such as platforms and frameworks, to allow all future research to account for their effect.

We will be publishing more of our findings in the future, so stay tuned.

And if this sounds like something you would like to work on, why not apply on our job site?