EntityLinker
An EntityLinker
component disambiguates textual mentions (tagged as named
entities) to unique identifiers, grounding the named entities into the “real
world”. It requires a KnowledgeBase
, as well as a function to generate
plausible candidates from that KnowledgeBase
given a certain textual mention,
and a machine learning model to pick the right candidate, given the local
context of the mention. EntityLinker
defaults to using the
InMemoryLookupKB
implementation.
Assigned Attributes
Predictions, in the form of knowledge base IDs, will be assigned to
Token.ent_kb_id_
.
Location | Value |
---|---|
Token.ent_kb_id | Knowledge base ID (hash). int |
Token.ent_kb_id_ | Knowledge base ID. str |
Config and implementation
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
config
argument on nlp.add_pipe
or in your
config.cfg
for training. See the
model architectures documentation for details on the
architectures and their arguments and hyperparameters.
Setting | Description |
---|---|
labels_discard | NER labels that will automatically get a “NIL” prediction. Defaults to [] . Iterable[str] |
n_sents | The number of neighbouring sentences to take into account. Defaults to 0. int |
incl_prior | Whether or not to include prior probabilities from the KB in the model. Defaults to True . bool |
incl_context | Whether or not to include the local context in the model. Defaults to True . bool |
model | The Model powering the pipeline component. Defaults to EntityLinker. Model |
entity_vector_length | Size of encoding vectors in the KB. Defaults to 64 . int |
use_gold_ents | Whether to copy entities from the gold docs or not. Defaults to True . If False , entities must be set in the training data or by an annotating component in the pipeline. int |
get_candidates | Function that generates plausible candidates for a given Span object. Defaults to CandidateGenerator, a function looking up exact, case-dependent aliases in the KB. Callable[[KnowledgeBase,Span], Iterable[Candidate]] |
get_candidates_batch v3.5 | Function that generates plausible candidates for a given batch of Span objects. Defaults to CandidateBatchGenerator, a function looking up exact, case-dependent aliases in the KB. Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]] |
generate_empty_kb v3.5.1 | Function that generates an empty KnowledgeBase object. Defaults to spacy.EmptyKB.v2 , which generates an empty InMemoryLookupKB . Callable[[Vocab, int],KnowledgeBase] |
overwrite v3.2 | Whether existing annotation is overwritten. Defaults to True . bool |
scorer v3.2 | The scoring method. Defaults to Scorer.score_links . Optional[Callable] |
threshold v3.4 | Confidence threshold for entity predictions. The default of None implies that all predictions are accepted, otherwise those with a score beneath the threshold are discarded. If there are no predictions with scores above the threshold, the linked entity is NIL . Optional[float] |
explosion/spaCy/master/spacy/pipeline/entity_linker.py
EntityLinker.__init__ method
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.add_pipe
.
Upon construction of the entity linker component, an empty knowledge base is
constructed with the provided entity_vector_length
. If you want to use a
custom knowledge base, you should either call
set_kb
or provide a kb_loader
in the
initialize
call.
Name | Description |
---|---|
vocab | The shared vocabulary. Vocab |
model | The Model powering the pipeline component. Model |
name | String name of the component instance. Used to add entries to the losses during training. str |
keyword-only | |
entity_vector_length | Size of encoding vectors in the KB. int |
get_candidates | Function that generates plausible candidates for a given Span object. Callable[[KnowledgeBase,Span], Iterable[Candidate]] |
labels_discard | NER labels that will automatically get a "NIL" prediction. Iterable[str] |
n_sents | The number of neighbouring sentences to take into account. int |
incl_prior | Whether or not to include prior probabilities from the KB in the model. bool |
incl_context | Whether or not to include the local context in the model. bool |
overwrite v3.2 | Whether existing annotation is overwritten. Defaults to True . bool |
scorer v3.2 | The scoring method. Defaults to Scorer.score_links . Optional[Callable] |
threshold v3.4 | Confidence threshold for entity predictions. The default of None implies that all predictions are accepted, otherwise those with a score beneath the threshold are discarded. If there are no predictions with scores above the threshold, the linked entity is NIL . Optional[float] |
EntityLinker.__call__ method
Apply the pipe to one document. The document is modified in place and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and pipe
delegate to the predict
and
set_annotations
methods.
Name | Description |
---|---|
doc | The document to process. Doc |
RETURNS | The processed document. Doc |
EntityLinker.pipe method
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Name | Description |
---|---|
stream | A stream of documents. Iterable[Doc] |
keyword-only | |
batch_size | The number of documents to buffer. Defaults to 128 . int |
YIELDS | The processed documents in order. Doc |
EntityLinker.set_kb methodv3.0
The kb_loader
should be a function that takes a Vocab
instance and creates
the KnowledgeBase
, ensuring that the strings of the knowledge base are synced
with the current vocab.
Name | Description |
---|---|
kb_loader | Function that creates a KnowledgeBase from a Vocab instance. Callable[[Vocab],KnowledgeBase] |
EntityLinker.initialize methodv3.0
Initialize the component for training. get_examples
should be a function that
returns an iterable of Example
objects. At least one example
should be supplied. The data examples are used to initialize the model of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
inferring missing shapes and
setting up the label scheme based on the data. This method is typically called
by Language.initialize
.
Optionally, a kb_loader
argument may be specified to change the internal
knowledge base. This argument should be a function that takes a Vocab
instance
and creates the KnowledgeBase
, ensuring that the strings of the knowledge base
are synced with the current vocab.
Name | Description |
---|---|
get_examples | Function that returns gold-standard annotations in the form of Example objects. Must contain at least one Example . Callable[[], Iterable[Example]] |
keyword-only | |
nlp | The current nlp object. Defaults to None . Optional[Language] |
kb_loader | Function that creates a KnowledgeBase from a Vocab instance. Callable[[Vocab],KnowledgeBase] |
EntityLinker.predict method
Apply the component’s model to a batch of Doc
objects, without
modifying them. Returns the KB IDs for each entity in each doc, including NIL
if there is no prediction.
Name | Description |
---|---|
docs | The documents to predict. Iterable[Doc] |
RETURNS | The predicted KB identifiers for the entities in the docs . List[str] |
EntityLinker.set_annotations method
Modify a batch of documents, using pre-computed entity IDs for a list of named entities.
Name | Description |
---|---|
docs | The documents to modify. Iterable[Doc] |
kb_ids | The knowledge base identifiers for the entities in the docs, predicted by EntityLinker.predict . List[str] |
EntityLinker.update method
Learn from a batch of Example
objects, updating both the
pipe’s entity linking model and context encoder. Delegates to
predict
.
Name | Description |
---|---|
examples | A batch of Example objects to learn from. Iterable[Example] |
keyword-only | |
drop | The dropout rate. float |
sgd | An optimizer. Will be created via create_optimizer if not set. Optional[Optimizer] |
losses | Optional record of the loss during training. Updated using the component name as the key. Optional[Dict[str, float]] |
RETURNS | The updated losses dictionary. Dict[str, float] |
EntityLinker.create_optimizer method
Create an optimizer for the pipeline component.
Name | Description |
---|---|
RETURNS | The optimizer. Optimizer |
EntityLinker.use_params methodcontextmanager
Modify the pipe’s model, to use the given parameter values. At the end of the context, the original parameters are restored.
Name | Description |
---|---|
params | The parameter values to use in the model. dict |
EntityLinker.to_disk method
Serialize the pipe to disk.
Name | Description |
---|---|
path | A path to a directory, which will be created if it doesn’t exist. Paths may be either strings or Path -like objects. Union[str,Path] |
keyword-only | |
exclude | String names of serialization fields to exclude. Iterable[str] |
EntityLinker.from_disk method
Load the pipe from disk. Modifies the object in place and returns it.
Name | Description |
---|---|
path | A path to a directory. Paths may be either strings or Path -like objects. Union[str,Path] |
keyword-only | |
exclude | String names of serialization fields to exclude. Iterable[str] |
RETURNS | The modified EntityLinker object. EntityLinker |
EntityLinker.to_bytes method
Serialize the pipe to a bytestring, including the KnowledgeBase
.
Name | Description |
---|---|
keyword-only | |
exclude | String names of serialization fields to exclude. Iterable[str] |
RETURNS | The serialized form of the EntityLinker object. bytes |
EntityLinker.from_bytes method
Load the pipe from a bytestring. Modifies the object in place and returns it.
Name | Description |
---|---|
bytes_data | The data to load from. bytes |
keyword-only | |
exclude | String names of serialization fields to exclude. Iterable[str] |
RETURNS | The EntityLinker object. EntityLinker |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Name | Description |
---|---|
vocab | The shared Vocab . |
cfg | The config file. You usually don’t want to exclude this. |
model | The binary model data. You usually don’t want to exclude this. |
kb | The knowledge base. You usually don’t want to exclude this. |