Unstructured
This notebook covers how to use Unstructured
document loader to load files of many types. Unstructured
currently supports loading of text files, powerpoints, html, pdfs, images, and more.
Please see this guide for more instructions on setting up Unstructured locally, including setting up required system dependencies.
Overview
Integration details
Class | Package | Local | Serializable | JS support |
---|---|---|---|---|
UnstructuredLoader | langchain_unstructured | ✅ | ❌ | ✅ |
Loader features
Source | Document Lazy Loading | Native Async Support |
---|---|---|
UnstructuredLoader | ✅ | ❌ |
Setup
Credentials
By default, langchain-unstructured
installs a smaller footprint that requires offloading of the partitioning logic to the Unstructured API, which requires an API key. If you use the local installation, you do not need an API key. To get your API key, head over to this site and get an API key, and then set it in the cell below:
import getpass
import os
if "UNSTRUCTURED_API_KEY" not in os.environ:
os.environ["UNSTRUCTURED_API_KEY"] = getpass.getpass(
"Enter your Unstructured API key: "
)
Installation
Normal Installation
The following packages are required to run the rest of this notebook.
# Install package, compatible with API partitioning
%pip install --upgrade --quiet langchain-unstructured unstructured-client unstructured "unstructured[pdf]" python-magic
Installation for Local
If you would like to run the partitioning logic locally, you will need to install a combination of system dependencies, as outlined in the Unstructured documentation here.
For example, on Macs you can install the required dependencies with:
# base dependencies
brew install libmagic poppler tesseract
# If parsing xml / html documents:
brew install libxml2 libxslt
You can install the required pip
dependencies needed for local with:
pip install "langchain-unstructured[local]"
Initialization
The UnstructuredLoader
allows loading from a variety of different file types. To read all about the unstructured
package please refer to their documentation/. In this example, we show loading from both a text file and a PDF file.
from langchain_unstructured import UnstructuredLoader
file_paths = [
"./example_data/layout-parser-paper.pdf",
"./example_data/state_of_the_union.txt",
]
loader = UnstructuredLoader(file_paths)
Load
docs = loader.load()
docs[0]
INFO: pikepdf C++ to Python logger bridge initialized
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 213.36), (16.34, 253.36), (36.34, 253.36), (36.34, 213.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'd3ce55f220dfb75891b4394a18bcb973'}, page_content='1 2 0 2')
print(docs[0].metadata)
{'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 213.36), (16.34, 253.36), (36.34, 253.36), (36.34, 213.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'd3ce55f220dfb75891b4394a18bcb973'}
Lazy Load
pages = []
for doc in loader.lazy_load():
pages.append(doc)
pages[0]
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 213.36), (16.34, 253.36), (36.34, 253.36), (36.34, 213.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'd3ce55f220dfb75891b4394a18bcb973'}, page_content='1 2 0 2')
Post Processing
If you need to post process the unstructured
elements after extraction, you can pass in a list of
str
-> str
functions to the post_processors
kwarg when you instantiate the UnstructuredLoader
. This applies to other Unstructured loaders as well. Below is an example.
from langchain_unstructured import UnstructuredLoader
from unstructured.cleaners.core import clean_extra_whitespace
loader = UnstructuredLoader(
"./example_data/layout-parser-paper.pdf",
post_processors=[clean_extra_whitespace],
)
docs = loader.load()
docs[5:10]
[Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 393.9), (16.34, 560.0), (36.34, 560.0), (36.34, 393.9)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': '89565df026a24279aaea20dc08cedbec', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'e9fa370aef7ee5c05744eb7bb7d9981b'}, page_content='2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a'),
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((157.62199999999999, 114.23496279999995), (157.62199999999999, 146.5141628), (457.7358962799999, 146.5141628), (457.7358962799999, 114.23496279999995)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'Title', 'element_id': 'bde0b230a1aa488e3ce837d33015181b'}, page_content='LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis'),
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((134.809, 168.64029940800003), (134.809, 192.2517444), (480.5464199080001, 192.2517444), (480.5464199080001, 168.64029940800003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': '54700f902899f0c8c90488fa8d825bce'}, page_content='Zejiang Shen1 ((cid:0)), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain Lee4, Jacob Carlson3, and Weining Li5'),
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((207.23000000000002, 202.57205439999996), (207.23000000000002, 311.8195408), (408.12676, 311.8195408), (408.12676, 202.57205439999996)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'b650f5867bad9bb4e30384282c79bcfe'}, page_content='1 Allen Institute for AI [email protected] 2 Brown University ruochen [email protected] 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington [email protected] 5 University of Waterloo [email protected]'),
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((162.779, 338.45008160000003), (162.779, 566.8455408), (454.0372021523199, 566.8455408), (454.0372021523199, 338.45008160000003)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-02-27T15:49:27', 'links': [{'text': ':// layout - parser . github . io', 'url': 'https://layout-parser.github.io', 'start_index': 1477}], 'page_number': 1, 'parent_id': 'bde0b230a1aa488e3ce837d33015181b', 'filetype': 'application/pdf', 'category': 'NarrativeText', 'element_id': 'cfc957c94fe63c8fd7c7f4bcb56e75a7'}, page_content='Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.')]
Unstructured API
If you want to get up and running with smaller packages and get the most up-to-date partitioning you can pip install unstructured-client
and pip install langchain-unstructured
. For
more information about the UnstructuredLoader
, refer to the
Unstructured provider page.
The loader will process your document using the hosted Unstructured serverless API when you pass in
your api_key
and set partition_via_api=True
. You can generate a free
Unstructured API key here.
Check out the instructions here if you’d like to self-host the Unstructured API or run it locally.
from langchain_unstructured import UnstructuredLoader
loader = UnstructuredLoader(
file_path="example_data/fake.docx",
api_key=os.getenv("UNSTRUCTURED_API_KEY"),
partition_via_api=True,
)
docs = loader.load()
docs[0]
INFO: Preparing to split document for partition.
INFO: Given file doesn't have '.pdf' extension, so splitting is not enabled.
INFO: Partitioning without split.
INFO: Successfully partitioned the document.
Document(metadata={'source': 'example_data/fake.docx', 'category_depth': 0, 'filename': 'fake.docx', 'languages': ['por', 'cat'], 'filetype': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', 'category': 'Title', 'element_id': '56d531394823d81787d77a04462ed096'}, page_content='Lorem ipsum dolor sit amet.')
You can also batch multiple files through the Unstructured API in a single API using UnstructuredLoader
.
loader = UnstructuredLoader(
file_path=["example_data/fake.docx", "example_data/fake-email.eml"],
api_key=os.getenv("UNSTRUCTURED_API_KEY"),
partition_via_api=True,
)
docs = loader.load()
print(docs[0].metadata["filename"], ": ", docs[0].page_content[:100])
print(docs[-1].metadata["filename"], ": ", docs[-1].page_content[:100])
INFO: Preparing to split document for partition.
INFO: Given file doesn't have '.pdf' extension, so splitting is not enabled.
INFO: Partitioning without split.
INFO: Successfully partitioned the document.
INFO: Preparing to split document for partition.
INFO: Given file doesn't have '.pdf' extension, so splitting is not enabled.
INFO: Partitioning without split.
INFO: Successfully partitioned the document.
``````output
fake.docx : Lorem ipsum dolor sit amet.
fake-email.eml : Violets are blue
Unstructured SDK Client
Partitioning with the Unstructured API relies on the Unstructured SDK Client.
If you want to customize the client, you will have to pass an UnstructuredClient
instance to the UnstructuredLoader
. Below is an example showing how you can customize features of the client such as using your own requests.Session()
, passing an alternative server_url
, and customizing the RetryConfig
object. For more information about customizing the client or what additional parameters the sdk client accepts, refer to the Unstructured Python SDK docs and the client section of the API Parameters docs. Note that all API Parameters should be passed to the UnstructuredLoader
.
import requests
from langchain_unstructured import UnstructuredLoader
from unstructured_client import UnstructuredClient
from unstructured_client.utils import BackoffStrategy, RetryConfig
client = UnstructuredClient(
api_key_auth=os.getenv(
"UNSTRUCTURED_API_KEY"
), # Note: the client API param is "api_key_auth" instead of "api_key"
client=requests.Session(), # Define your own requests session
server_url="https://api.unstructuredapp.io/general/v0/general", # Define your own api url
retry_config=RetryConfig(
strategy="backoff",
retry_connection_errors=True,
backoff=BackoffStrategy(
initial_interval=500,
max_interval=60000,
exponent=1.5,
max_elapsed_time=900000,
),
), # Define your own retry config
)
loader = UnstructuredLoader(
"./example_data/layout-parser-paper.pdf",
partition_via_api=True,
client=client,
split_pdf_page=True,
split_pdf_page_range=[1, 10],
)
docs = loader.load()
print(docs[0].metadata["filename"], ": ", docs[0].page_content[:100])
INFO: Preparing to split document for partition.
INFO: Concurrency level set to 5
INFO: Splitting pages 1 to 10 (10 total)
INFO: Determined optimal split size of 2 pages.
INFO: Partitioning 5 files with 2 page(s) each.
INFO: Partitioning set #1 (pages 1-2).
INFO: Partitioning set #2 (pages 3-4).
INFO: Partitioning set #3 (pages 5-6).
INFO: Partitioning set #4 (pages 7-8).
INFO: Partitioning set #5 (pages 9-10).
INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general "HTTP/1.1 200 OK"
INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general "HTTP/1.1 200 OK"
INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general "HTTP/1.1 200 OK"
INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general "HTTP/1.1 200 OK"
INFO: Successfully partitioned set #1, elements added to the final result.
INFO: Successfully partitioned set #2, elements added to the final result.
INFO: Successfully partitioned set #3, elements added to the final result.
INFO: Successfully partitioned set #4, elements added to the final result.
INFO: Successfully partitioned set #5, elements added to the final result.
INFO: Successfully partitioned the document.
``````output
layout-parser-paper.pdf : LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis
Chunking
The UnstructuredLoader
does not support mode
as parameter for grouping text like the older
loader UnstructuredFileLoader
and others did. It instead supports "chunking". Chunking in
unstructured differs from other chunking mechanisms you may be familiar with that form chunks based
on plain-text features--character sequences like "\n\n" or "\n" that might indicate a paragraph
boundary or list-item boundary. Instead, all documents are split using specific knowledge about each
document format to partition the document into semantic units (document elements) and we only need to
resort to text-splitting when a single element exceeds the desired maximum chunk size. In general,
chunking combines consecutive elements to form chunks as large as possible without exceeding the
maximum chunk size. Chunking produces a sequence of CompositeElement, Table, or TableChunk elements.
Each “chunk” is an instance of one of these three types.
See this page for more
details about chunking options, but to reproduce the same behavior as mode="single"
, you can set
chunking_strategy="basic"
, max_characters=<some-really-big-number>
, and include_orig_elements=False
.
from langchain_unstructured import UnstructuredLoader
loader = UnstructuredLoader(
"./example_data/layout-parser-paper.pdf",
chunking_strategy="basic",
max_characters=1000000,
include_orig_elements=False,
)
docs = loader.load()
print("Number of LangChain documents:", len(docs))
print("Length of text in the document:", len(docs[0].page_content))
Number of LangChain documents: 1
Length of text in the document: 42772
Loading web pages
UnstructuredLoader
accepts a web_url
kwarg when run locally that populates the url
parameter of the underlying Unstructured partition. This allows for the parsing of remotely hosted documents, such as HTML web pages.
Example usage:
from langchain_unstructured import UnstructuredLoader
loader = UnstructuredLoader(web_url="https://www.example.com")
docs = loader.load()
for doc in docs:
print(f"{doc}\n")
page_content='Example Domain' metadata={'category_depth': 0, 'languages': ['eng'], 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'Title', 'element_id': 'fdaa78d856f9d143aeeed85bf23f58f8'}
page_content='This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission.' metadata={'languages': ['eng'], 'parent_id': 'fdaa78d856f9d143aeeed85bf23f58f8', 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'NarrativeText', 'element_id': '3652b8458b0688639f973fe36253c992'}
page_content='More information...' metadata={'category_depth': 0, 'link_texts': ['More information...'], 'link_urls': ['https://www.iana.org/domains/example'], 'languages': ['eng'], 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'Title', 'element_id': '793ab98565d6f6d6f3a6d614e3ace2a9'}
API reference
For detailed documentation of all UnstructuredLoader
features and configurations head to the API reference: https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html
Related
- Document loader conceptual guide
- Document loader how-to guides