Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Mar 21;89(1):23.
doi: 10.5334/aogh.4056. eCollection 2023.

The Minderoo-Monaco Commission on Plastics and Human Health

Affiliations
Review

The Minderoo-Monaco Commission on Plastics and Human Health

Philip J Landrigan et al. Ann Glob Health. .

Erratum in

  • Correction: The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. Landrigan PJ, et al. Ann Glob Health. 2023 Oct 11;89(1):71. doi: 10.5334/aogh.4331. eCollection 2023. Ann Glob Health. 2023. PMID: 37841805 Free PMC article.

Abstract

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted.

Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives.

Report structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations.

Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked.

Plastic life cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic.

Environmental findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being.

Human health findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life.

Economic findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation.

Social justice findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs.

Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals.

Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs.

Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.

Keywords: environmental health; human health; microplastics; ocean health; plastic additives; plastic life cycle.

PubMed Disclaimer

Conflict of interest statement

In addition to the adjunct positions at the Nigerian Institute of Medical Research and Lead City University in Nigeria, AM works for Shell Nigeria Exploration & Production Company but did not receive any support from the company for her research and for this study, and the company is not in any way involved in this study. MB, DC, AG, YM, BJS, CS, and SD are employed by the Minderoo Foundation, an independent not-for-profit philanthropic organization. The contributions of the following authors were supported by the Minderoo Foundation: MC, MH, RH, AL, AM, MP, YP, MS, JJS, HT & RCT. JJS’s work was also supported by the Woods Hole Center for Oceans and Human Health (NIH grant P01ES028938 and National Science Foundation grant OCE-1840381). MEH’s work was also supported by the Minderoo Foundation as well as by grants from Woods Hole Sea Grant (Award No. NA18OAR4170104, project R/P–89) and the March Marine Initiative, a program of March Limited, Bermuda. BDJ was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. JAP was supported by the US National Science Foundation (NSF) Graduate Research Fellowship Program as well as by a grant from Woods Hole Sea Grant (Award No. NA180AR4170104, project R/P-89). ZW gratefully acknowledges funding by the European Union under the Horizon 2020 Research and Innovation Programme (grant agreement number 101036756). No other authors have conflicts of interest.

Figures

Figure 2.1 The plastic life cycle encompasses production, use and disposal.
Figure 2.1
The plastic life cycle. The plastic life cycle is long and complex spanning multiple countries. There are three major phases. During production, carbon feedstocks – derived 99% from coal, oil and gas – are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic is used in virtually every aspect of modern life and has provided many benefits. Single-use plastic constitutes the largest market share followed by synthetic fibers, building and construction, transport, electrical, agriculture and medical. Recycling is minimal. Disposal involves landfilling as well as controlled and uncontrolled burning. Plastic-laden e-waste is particularly problematic. Transnational environmental leakage of chemicals and plastic waste occurs throughout the life cycle resulting in extensive pollution and health hazards. Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 2.2 Throwaway Living – Disposable items cut down household chores.
Figure 2.2
Throwaway Living – Disposable items cut down household chores. A family tossing single-use products through the air illustrating how society has turned into a disposable society with throwaway products, New York, NY, July 7 1955 (Life Magazine August 1st, 1955). Credit: Peter Stackpole/The LIFE Picture Collection/Shutterstock.
Figure 2.3 Plastic life cycle: Current statistics and predictions on market trends.
Figure 2.3
Plastic life cycle: Production and market predictions. Large volumes of plastic have been made since production started in 1950s with continuing predicted increases. Mt, Megatons; Gt, Gigatons. References: [1](Organisation for Economic Co-operation and Development (OECD), 2022a); [2](European Environment Agency (EEA), 2021); [3](Cabernard et al., 2022); [4](Wiesinger, Wang and Hellweg, 2021); [5](Charles, Kimman and Saran, 2021); [6](Geyer, 2020); [7](Organisation for Economic Co-operation and Development (OECD), 2022b); [8](Lebreton and Andrady, 2019). Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 2.4 Hazardous chemicals used, present, and released across the plastic life cycle.
Figure 2.4
A multitude of hazardous chemicals are used, present, and released across all stages of the plastic life cycle. PUR, polyurethane; PAN, polyacrylonitrile; PVC, polyvinyl chloride; PBT, persistent, bioaccumulative and toxic; vPvB, very persistent/very bioaccumulative; EDCs, endocrine disrupting chemicals. References: [1](Wiesinger, Wang and Hellweg, 2021); [2](Lithner, Larsson and Dave, 2011); [3](Groh et al., 2019); [4](Food Packaging Forum Foundation, 2022); [5](Hahladakis et al., 2018); [6](Lowe et al., 2021). Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 2.5 Plastic - a mixture of inter-twined polymers and multiple chemicals.
Figure 2.5
Plastic is a complex chemical mixture of inter-twined polymers comprising multiple monomeric units joined by carbon-carbon bonds and multiple chemicals added to enhance production and impart properties such as flexibility, strength and durability. Straight chains are polyvinyl chloride (PVC) polymers. Additives depicted are di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), a polybrominated diphenyl ether congener (PBDE-47) and a polychlorinated biphenyl congener (PCB-153). Credit: Manuel Brunner, co-author.
Figure 2.6 Leakage of plastic into the environment across the plastic life cycle.
Figure 2.6
Plastic life cycle: Plastic leakage. Plastic and plastic-associated chemicals leak into the environment across all stages of the plastic life cycle. Chemical-laden macroplastics constitute the bulk of plastic leakage. Plastic polymers can take many years to degrade in the environment with the rate of degradation depending on many factors such as temperature, light and mechanical action.[9] Mt, Megatons; PET, polyethylene terephthalate; PVC, polyvinyl chloride;LDPE, low-density polyethylene. References: [1](Organisation for Economic Co-operation and Development (OECD), 2022a); [2](Karlsson et al., 2018); [3](Organisation for Economic Co-operation and Development (OECD), 2021); [4](Cole and Sherrington, 2016); [5](Paruta, Pucino and Boucher, 2022); [6](Hann et al., 2018); [7](Periyasamy and Tehrani-Bagha, 2022); [8](Ryberg, Laurent and Hauschild, 2018); [9](Chamas et al., 2020). Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 2.7 2020 net greenhouse gas (GHG) emissions from the world’s largest emitters.
Figure 2.7
2020 net greenhouse gas (GHG) emissions from the world’s largest emitters. Gigatons (Gt) of carbon dioxide equivalents (CO2e), including land use, land-use change and forestry, and share of global total (%). In 2015, the annual emissions of CO2 and other greenhouse gas from plastics production was 1.96 Gt of CO2e, or 3.7% of total emissions (Cabernard et al., 2022)[1]. Source & Permissions: Adapted from Rhodium Group ClimateDeck. https://rhg.com/research/preliminary-2020-global-greenhouse-gas-emissions-estimates/
Figure 3.1. The many possible pathways of movement and transformation for plastic after it enters the ocean.
Figure 3.1
Fate of plastic debris in the environment. Diagram illustrating many of the possible pathways over the lifecycle of plastic litter on its journey from land to sea. Plastic debris enters the ocean through both aquatic (rivers, accidental escape at sea) and land-based sources (littering, escape from municipal waste management such as wastewater treatment plants (WWTPs)). Depending on the density of the plastic material, plastic items will remain afloat for a given part of their lifecycle or, as they become weighted down by biofouling, will begin to sink into the water column, ultimately to the ocean bottom. Changes in biofouling with depth may lead to depth oscillations (not shown) before particles end up on the seafloor (Kooi et al., 2017; Rummel et al., 2017; Royer et al., 2021). Mechanical, photochemical and biological forces break down plastic debris into microplastics and nanoplastics that subsequently become incorporated into the marine food web. Organisms such as filter feeders may further concentrate these smaller particles, given their capacity to filter large volumes of water. Microorganisms begin to attach, colonizing plastic in the water within hours, and can include potentially harmful microorganisms, such as disease-causing pathogens. PET, polyethylene terephthalate; PVC, polyvinyl chloride. Figure reproduced from (Amaral-Zettler, Zettler and Mincer, 2020) [641], with permission from Springer Nature and the Copyright Clearance Center. The reproduced figure is not part of the open access license governing the current paper.
Figure 3.2 Degradation rates of various types of plastic, with and without additives.
Figure 3.2
Degradation rates for various plastics. “Vertical columns represent different environmental conditions (L, landfill/compost/soil; M, marine; B, biological; S, sunlight) and plastic types (represented by their resin identification codes). Plastics type 7, “others”, corresponds to various nominally biodegradable plastics. The range and average value for plastic types 1–6 are shown on the right as lines and squares, respectively, as well as for biodegradable “others”. Data points representing degradation rates that were unmeasurably slow are shown on the x-axis. Gray columns represent combinations for which no data were found.” PET, polyethylene terephthalate; HDPE, high-density polyethylene; PVC, polyvinyl chloride; LDPE, low-density polyethylene; PP, polypropylene; PS, polystyrene. Figure caption and figure reprinted with permission from (Chamas et al., 2020) [240] (CC BY 4.0).
Figure 3.3. Autoradiograph of plastic-exposed scallops illustrating the uptake and depuration of polystyrene nanoparticles.
Figure 3.3
Uptake and depuration of 24 nm polystyrene nanoparticles. (a) Tissue distributions shown by Quantitative Whole Body Autoradiography (QWBA) in Pecten maximus after 6 h uptake with (b) quantification of radioactivity levels measured in tissues (left axis; Bq g–1, S/Nnorm; right axis ng g–1), (c) Tissue distributions shown by QWBA in Pecten maximus after 8 days of depuration, with (d) quantification after 8 days of depuration (left axis Bq g–1, S/Nnorm; right axis, ng g–1). Each bar represents the mean value measured in 3–6 different sections of a given individual. No bar = radioactivity < LOD. nPS24 and nP250 are spherical polystyrene nanoparticles with sizes of approximately 24 ± 13 and 248 ± 21 nm respectively. HP, Hepatopancreas; Gi, Gills; Go, Gonad; I, Intestine; K, Kidney; M, Muscle; A, Anus. Figure caption and figure reprinted from (Al-Sid-Cheikh et al., 2018) [764] (CC BY 4.0).
Figure 3.4. Conceptual model of microplastic-mediated transfer of additives and persistent organic pollutants to marine animals and humans.
Figure 3.4
Conceptual model of microplastic-mediated transfer of additives and POPs to marine animals and humans. Conceptual model of microplastic-mediated transfer of additives and persistent organic pollutants (POPs) persistent to marine animals and humans. Plastic additives and legacy POPs accumulate in the ocean through leaching from waste virgin and recycled plastic; similarly, microplastics, which also contain additives, accumulate as a result of fragmentation. Plastic additives and legacy POPs can be adsorbed to microplastics. Humans can be directly exposed to plastic additives and legacy POPs from use of plastic products as well as indirectly via the food chain. Human exposure to microplastics via the food chain may also occur. Credit: Shige Takada and Manuel Brunner (co-authors).
Figure 3.5. Changes in the global risks of microplastic pollution in the ocean over time.
Figure 3.5
Global risks of microplastic pollution based on worst case scenario (unacceptable level (PNEC) = 7.99 *103 MP m–3) displayed in a four-panel plot, in which each panel corresponded to a specific year: 1970 (A), 2010 (B), 2050 (C), and 2100 (D). Cell specific (1° by 1°) risk estimates were calculated, and a 3D visualization of the data was generated. The risk estimates were represented in 3D as elevation values. As long as the risk quotient remains lower than the value of 1 (bluish tones), policy makers consider no risk due to MPs. In case that the risk quotient exceeds the value of 1 (reddish tones), there is a risk. Figure reproduced from (Everaert et al., 2020) [904] (CC BY-NC-ND 4.0).
Figure 3.6 Facts about the distribution, fate, and impacts of plastic in the ocean as described in this section.
Figure 3.6
Distribution, fate, and impacts of plastics in the ocean. Plastics enter aquatic environments (marine and freshwater), undergo processes that determine their distribution and fate, and impact organisms and ecosystems in a variety of ways. Mt, Megatons; POPs, persistent organic pollutants. References: [1](Rochman et al., 2019); [2](Lau et al., 2020); [3](Borrelle et al., 2020); [4](Santos, Machovsky-Capuska and Andrades, 2021); [5](Pitt, Aluru and Hahn, 2023); [6](Everaert et al., 2020). Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 4.1 Health impacts of plastic.
Figure 4.1
Health impacts of plastic. Plastic threatens and harms human health at every stage of its life cycle. COPD is chronic obstructive pulmonary disease. Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 4.2 Fatalities caused by pipeline incidents.
Figure 4.2
Fatalities caused by pipeline incidents. Permission: Pipeline and Hazardous Materials Safety Administration (no date) Pipeline incident 20-year trends | phmsa. Available at: https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends (Accessed: 24 October 2022). Figure adapted from (Pipeline and Hazardous Materials Safety Administration (PHMSA), 2022) by Manuel Brunner (co-author).
Figure 4.3. Global number of oil spills from tankers from 1970-2021
Figure 4.3
Global number of oil spills from tankers from 1970–2021. Permissions: no special permissions needed. Roser, M. and Ritchie, H. (2022) ‘Oil spills’, Our World in Data [Preprint]. Available at: https://ourworldindata.org/oil-spills (Accessed: 24 October 2022) and: ITOPF (2022). Oil tanker spill statistics 2021. ITOPF Ltd, London, UK. Figure adapted by Manuel Brunner (co-author).
Figure 4.4 Some toxic chemicals with human health impacts.
Figure 4.4
Some toxic chemicals with human health impacts. The human health impacts of the chemicals listed in each phase of the plastic life cycle are described in the text. Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 5.1 Health costs of plastics across the plastic life cycle.
Figure 5.1
Health costs of plastic. Plastic causes significant harm to humans as well as the environment across all stages of its life cycle. Quantifying the human health disease burden and economic costs associated with plastic production, use, and disposal is a complex, and at times difficult, endeavor. Conducting high-quality epidemiological studies will greatly benefit this emerging field of research. PPP, purchasing power parity; PM2.5, particulate matter with a diameter of 2.5 micrometers or less; CO2, carbon dioxide; Gt, Gigatons; CO2e, carbon dioxide equivalent; DEHP, di(2-ethylhexyl) phthalate; PBDE, polybrominated diphenyl ether; BPA, bisphenol A. Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 6.1 The impact of plastic on social and environmental justice.
Figure 6.1
The impact of plastic on social and environmental justice. Credit: Designed in 2022 by Will Stahl-Timmins.
Figure 6.2 Informal waste pickers - transit storage site in Ogun State, Nigeria.
Figure 6.2
Informal waste pickers – transit storage site in Ogun State, Nigeria. Credit: Adetoun Mustapha and Korede Out.
Figure 6.3 Impacts of plastic to vulnerable populations.
Figure 6.3
Impacts of plastic to vulnerable populations. As depicted in this figure from (UNEP and Azul, 2021), vulnerable groups and populations are adversely affected by plastic pollution (which includes intentional and unintentional leakage of plastic and chemical additives to the environment), throughout the entire life cycle of plastics, beginning with extraction and production, through its market penetration and uses, to plastic waste management and disposal. Original source: (UNEP and Azul, 2021).
Figure 6.4 Bottled drinking water to support Hurricane Katrina personnel in New Orleans, Louisiana.
Figure 6.4
Bottled drinking water to support Hurricane Katrina personnel in New Orleans, Louisiana. Credit: MSGT Michael E. Best, USAF.
Figure 6.5 Single use plastic waste clogging open drains in Makoko, Lagos, Nigeria.
Figure 6.5
Single use plastic waste clogging open drains in Makoko, Lagos, Nigeria. Credit: Adetoun Mustapha and Korede Out.
Figure 6.6 Female workers sort out plastic bottles for recycling in a factory in Dhaka, Bangladesh.
Figure 6.6
Female workers sort out plastic bottles for recycling in a factory in Dhaka, Bangladesh. Credit: Abir Abdullah/Climate Visuals Countdown.
Figure 6.7 Ocean equity is comprised of several distinct dimensions.
Figure 6.7
Ocean equity is comprised of several distinct dimensions. Bennett (2022) describes, and depicts in this figure, a range of equity considerations (which include many aspects of procedural and distributional equity) relevant to those working in coastal and marine conservation. These equity dimensions may also provide a useful framework for embedding social and environmental justice (SEJ) in decisions and processes relevant to plastic production and pollution at the local to global scale – even beyond coastal and marine areas. Original source: (Bennett, 2022).
Figure 6.8 Trash next to a waterway in Indonesia.
Figure 6.8
Trash next to a waterway in Indonesia. Credit: Credit to Richard C. Thompson, University of Plymouth.

Similar articles

  • Human Health and Ocean Pollution.
    Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Landrigan PJ, et al. Ann Glob Health. 2020 Dec 3;86(1):151. doi: 10.5334/aogh.2831. Ann Glob Health. 2020. PMID: 33354517 Free PMC article. Review.
  • The 2023 Latin America report of the Lancet Countdown on health and climate change: the imperative for health-centred climate-resilient development.
    Hartinger SM, Palmeiro-Silva YK, Llerena-Cayo C, Blanco-Villafuerte L, Escobar LE, Diaz A, Sarmiento JH, Lescano AG, Melo O, Rojas-Rueda D, Takahashi B, Callaghan M, Chesini F, Dasgupta S, Posse CG, Gouveia N, Martins de Carvalho A, Miranda-Chacón Z, Mohajeri N, Pantoja C, Robinson EJZ, Salas MF, Santiago R, Sauma E, Santos-Vega M, Scamman D, Sergeeva M, Souza de Camargo T, Sorensen C, Umaña JD, Yglesias-González M, Walawender M, Buss D, Romanello M. Hartinger SM, et al. Lancet Reg Health Am. 2024 Apr 23;33:100746. doi: 10.1016/j.lana.2024.100746. eCollection 2024 May. Lancet Reg Health Am. 2024. PMID: 38800647 Free PMC article. Review.
  • Plastic pollution and potential solutions.
    Rhodes CJ. Rhodes CJ. Sci Prog. 2018 Sep 1;101(3):207-260. doi: 10.3184/003685018X15294876706211. Epub 2018 Jul 19. Sci Prog. 2018. PMID: 30025551 Free PMC article. Review.
  • Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, Moraleda C, Rogers L, Daniels K, Green P. Crider K, et al. Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
  • Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    [No authors listed] [No authors listed] J Vis Exp. 2023 May 26;(195). doi: 10.3791/6561. J Vis Exp. 2023. PMID: 37235796

Cited by

References

    1. Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, Peck BB. Polystyrene spherules in coastal waters. Science. 1972; 178(4062): 749–750. DOI: 10.1126/science.178.4062.749 - DOI - PubMed
    1. Thompson RC, Olsen Y, Mitchell RP, et al. Lost at sea: where is all the plastic? Science. 2004; 304(5672): 838. DOI: 10.1126/science.1094559 - DOI - PubMed
    1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017; 3(7): e170078. DOI: 10.1126/sciadv.1700782 - DOI - PMC - PubMed
    1. Ritchie H, Roser M. Plastic Pollution. Our world in data. Published September 2018. Accessed August 30, 2022. https://ourworldindata.org/plastic-pollution.
    1. Organisation for Economic Co-operation and Development (OECD). Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. Organisation for Economic Co-operation and Development; 2022. Accessed December 15, 2022. DOI: 10.1787/de747aef-en - DOI

Publication types