Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2019 Apr 4;16(1):15.
doi: 10.1186/s12970-019-0282-y.

Fluid type influences acute hydration and muscle performance recovery in human subjects

Affiliations
Randomized Controlled Trial

Fluid type influences acute hydration and muscle performance recovery in human subjects

Preston R Harris et al. J Int Soc Sports Nutr. .

Abstract

Background: Exercise and heat trigger dehydration and an increase in extracellular fluid osmolality, leading to deficits in exercise performance and thermoregulation. Evidence from previous studies supports the potential for deep-ocean mineral water to improve recovery of exercise performance post-exercise. We therefore wished to determine whether acute rehydration and muscle strength recovery was enhanced by deep-ocean mineral water following a dehydrating exercise, compared to a sports drink or mountain spring water. We hypothesized that muscle strength would decrease as a result of dehydrating exercise, and that recovery of muscle strength and hydration would depend on the type of rehydrating fluid.

Methods: Using a counterbalanced, crossover study design, female (n = 8) and male (n = 9) participants performed a dehydrating exercise protocol under heat stress until achieving 3% body mass loss. Participants rehydrated with either deep-ocean mineral water (Deep), mountain spring water (Spring), or a carbohydrate-based sports drink (Sports) at a volume equal to the volume of fluid loss. We measured relative hydration using salivary osmolality (Sosm) and muscle strength using peak torque from a leg extension maneuver.

Results: Sosm significantly increased (p < 0.0001) with loss of body mass during the dehydrating exercise protocol. Males took less time (90.0 ± 18.3 min; P < 0.0034) to reach 3% body mass loss when compared to females (127.1 ± 20.0 min). We used a mono-exponential model to fit the return of Sosm to baseline values during the rehydrating phase. Whether fitting stimulated or unstimulated Sosm, male and female participants receiving Deep as the hydrating fluid exhibited the most rapid return to baseline Sosm (p < 0.0001) regardless of the fit parameter. Males compared to females generated more peak torque (p = 0.0005) at baseline (308.3 ± 56.7 Nm vs 172.8 ± 40.8 Nm, respectively) and immediately following 3% body mass loss (276.3 ± 39.5 Nm vs 153.5 ± 35.9 Nm). Participants experienced a loss. We also identified a significant effect of rehydrating fluid and sex on post-rehydration peak torque (p < 0.0117).

Conclusion: We conclude that deep-ocean mineral water positively affected hydration recovery after dehydrating exercise, and that it may also be beneficial for muscle strength recovery, although this, as well as the influence of sex, needs to be further examined by future research.

Trial registration: clincialtrials.gov PRS, NCT02486224 . Registered 08 June 2015.

Keywords: Deep sea water; Dehydration; Exercise; Humans; Sweat.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All participants provided consent under protocols adhering to guidelines approved by the Institutional Review Board at the University of Arizona and in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

  1. Kona Deep®™ provided the deep-ocean mineral water.

  2. The results of the present study do not constitute endorsement by ACSM

  3. The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Experimental design and protocol. Dehydration Protocol: Euhydrated participants were randomly assigned in a counterbalanced fashion to one of three groups (Deep, Sports, or Spring). Prior to data collection, participants executed 1 of 3 peak torque extension maneuvers to obtain a baseline value. Following peak torque extension, parameters were collected (indicated in the panel labeled DATA COLLECTION) and exercise was initiated using a stationary bicycle under moderate heat stress (32–35 °C). Exercise was continued for 15 min followed by collection of parameters. If participants did not achieve 3% body mass loss, exercise was reinitiated for another 15 min. This cycle was continued until participants lost a minimum 3% of body mass and participants were not allowed to evacuate or intake any fluids. Upon completion of the Dehydration Protocol, participants immediately executed the second (2) of 3 peak torque extension maneuvers to obtain a post-exercise value and transitioned to the Hydration protocol. Hydration protocol: Participants rehydrated with 1 of 3 fluids, in 2 phases. Phase 1: Participants consumed fluids at ½ of the total volume lost. 10 min following fluid intake a saliva sample was collected. Sample collection continued at 5-min intervals until 30 min from the time of fluid intake. Phase 2: The remaining amount (½ of the total volume lost) of fluid was ingested followed by saliva sample collection 10 min later. Saliva collection continued at 5-min intervals until 45 min from the second fluid intake. Immediately following the final saliva collection, participants executed the third [3] of 3 peak torque extension maneuvers to obtain a post-hydration value.
Fig. 2
Fig. 2
Salivary osmolality as a function of body mass loss. Salivary osmolality (Sosm mmol/Kg) was plotted as a function of change in body mass percentage in each of the three groups: Deep (a), Sports (b) or Spring (c) groups. Individual measures of salivary osmolality were averaged from the three trials. Salivary osmolality (Sosm mmol/Kg) was significantly elevated (*p < 0.0001; Females and Males) at Peak compared to Baseline collected as either Stimulated (d) or Unstimulated (e). No differences between Females and Males were detected, nor was there an interaction between sex and time point of data collection. Two-way ANOVA with post-hoc Bonferroni analysis. Data presented as mean ± S.D
Fig. 3
Fig. 3
Time required to achieve target dehydration indicated by a 3% body mass loss. a Bar graph representation of the time required to reach a loss of body mass that was at least 3% of starting body mass in the Deep, Sports and Spring groups for Females and Males. A repeated measures two-way ANOVA indicated no significant differences in Time to 3% Body Mass Loss among the experimental groups but did find a significant effect of sex (p < 0.0125). b Averaged values across experimental groups for Time to 3% Body Mass Loss in Females and Males. (*p < 0.034; Females vs. Males). c Averaged values across experimental groups for Sweat Rate (ml/min; total volume lost in ml over total time to 3% body mass loss;) in Females and Males. (*p < 0.0083; Females vs. Males). Two-way ANOVA with post-hoc Bonferroni analysis. Data presented as mean ± S.D
Fig. 4
Fig. 4
Rate of salivary osmolality recovery during fluid hydration following dehydrating exercise protocol. Salivary osmolality was fit with a single exponential decay (one-phase decay) starting with peak salivary osmolality against real time. a representative one-phase decay fit to salivary osmolality recovery during fluid hydration. Fluid was ingested in two phases indicated by the arrows. b-d Bar graph representation of one-phase decay fit parameters (K, tau (τ), and τ 1/2) in Females and Males from the Deep, Sports and Spring groups. A repeated-measures two-way ANOVA determined a significant impact of fluid on rate parameters of hydration that was not impacted by sex. Post-hoc Bonferroni analysis indicated a significant difference in the Deep group compared to both Sports and Spring groups (*p < 0.0001 compared to Sports and Spring groups). One-phase decay equation: Sosm = (Sosm(peak)- Sosm(baseline))Kt + Sosm(baseline); K = rate constant, tau (τ) =1/K, and τ 1/2 = half-time Sosm recovery. Data presented as mean ± S.D
Fig. 5
Fig. 5
Impact of dehydration and hydration on lower body muscle performance. Peak torque extension using Biodex™ was determined prior (Baseline) to and immediately following exercise (Post-Ex) and rehydrating protocol. a Averaged values across experimental groups for peak torque extension (Nm) at Baseline and Post-Ex in Females and Males. The dehydrating exercise protocol significantly impacted peak torque (p = 0.0048), which was dependent on sex (p = 0.0005) and the exercise protocol (p = 0.0002) by two-way ANOVA. Post-hoc Bonferroni analysis indicated a significant difference in Baseline and Post-Ex for Males only (p = 0.0117). the Deep group compared to both Sports and Spring groups (*p = 0.01; Females vs. Males). b Bar graph representation of the recovery in peak torque extension at the completion of the hydration protocol expressed as percentage of baseline peak torque (Peak Torqueend/Peak Torquebase X 100). There is a main effect of rehydrating fluid (p = 0.0157) by two-way ANOVA. Data presented as mean ± S.D

Similar articles

Cited by

References

    1. Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011;22(12):2166–2181. - PMC - PubMed
    1. Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–531. - PubMed
    1. Cheuvront SN, Carter R, 3rd, Sawka MN. Fluid balance and endurance exercise performance. Curr Sports Med Rep. 2003;2(4):202–208. - PubMed
    1. Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol (1985) 2006;100(5):1692–1701. - PubMed
    1. Lara B, Salinero JJ, Areces F, Ruiz-Vicente D, Gallo-Salazar C, Abian-Vicen J, Del Coso J. Sweat sodium loss influences serum sodium concentration in a marathon. Scand J Med Sci Sports. 2017;27(2):152–160. - PubMed

Publication types

Associated data