Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(4):e35271.
doi: 10.1371/journal.pone.0035271. Epub 2012 Apr 18.

Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence?

Affiliations

Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence?

Lakshmi Narayanan Lakshmanan et al. PLoS One. 2012.

Abstract

Deletion mutations within mitochondrial DNA (mtDNA) have been implicated in degenerative and aging related conditions, such as sarcopenia and neuro-degeneration. While the precise molecular mechanism of deletion formation in mtDNA is still not completely understood, genome motifs such as direct repeat (DR) and stem-loop (SL) have been observed in the neighborhood of deletion breakpoints and thus have been postulated to take part in mutagenesis. In this study, we have analyzed the mitochondrial genomes from four different mammals: human, rhesus monkey, mouse and rat, and compared them to randomly generated sequences to further elucidate the role of direct repeat and stem-loop motifs in aging associated mtDNA deletions. Our analysis revealed that in the four species, DR and SL structures are abundant and that their distributions in mtDNA are not statistically different from randomized sequences. However, the average distance between the reported age associated mtDNA breakpoints and their respective nearest DR motifs is significantly shorter than what is expected of random chance in human (p<10(-4)) and rhesus monkey (p = 0.0034), but not in mouse (p = 0.0719) and rat (p = 0.0437), indicating the existence of species specific difference in the relationship between DR motifs and deletion breakpoints. In addition, the frequencies of large DRs (>10 bp) tend to decrease with increasing lifespan among the four mammals studied here, further suggesting an evolutionary selection against stable mtDNA misalignments associated with long DRs in long-living animals. In contrast to the results on DR, the probability of finding SL motifs near a deletion breakpoint does not differ from random in any of the four mtDNA sequences considered. Taken together, the findings in this study give support for the importance of stable mtDNA misalignments, aided by long DRs, as a major mechanism of deletion formation in long-living, but not in short-living mammals.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Analysis of direct repeat (DR) motifs in mitochondrial genomes.
Abundance, distribution and free energy of DRs in mtDNA and random DNA sequences (n = 100) with the same base composition (R1) as corresponding mtDNA. (A) Frequency of DR pairs (≥6 bp) in the mtDNA of human, rhesus monkey, mouse and rat. The DR frequency is normalized with respect to the mtDNA length in each species. (B) The distribution of left and right DR sequences in the minor and major arcs of human mtDNA and the mean distribution of DRs in R1 random sequences. (C) DR sizes and DR free energies in human mtDNA and the corresponding R1 random sequences. The lower the free energy of a DR, i.e. the more negative, the more stable is the DNA duplex formed. (D) Distribution of free energies of DNA duplex formed by DRs (≥6 bp) in native mtDNA and random sequences (R1) of human, rhesus monkey, mouse and rat.
Figure 2
Figure 2. Stem-loop (SL) motifs in human mitochondrial genome.
Abundance and distribution of predicted SL motifs in single-stranded human mtDNA heavy strand major arc. The positions 545 to 10665 correspond to the H-strand sequence from the end of D-loop till the beginning of L-strand origin of replication respectively. The minimum free energy folded structure is depicted in circular form.
Figure 3
Figure 3. Deletion breakpoints and direct repeats.
Distributions of left and right breakpoints of aging-associated mtDNA deletions and of left and right DR motifs from (A) human, (B) rhesus monkey, (C) mouse and (D) rat. Standard deviation (error bars) for the frequency of breakpoints in each bin is calculated based on a binomial distribution.
Figure 4
Figure 4. Free energy and position wise distribution of the DRs in mtDNA major arc.
Resolution of DR distribution based on DR free energy and position in mtDNA sequence of (A) human, (B) rhesus monkey, (C) mouse and (D) rat. The x- and y- axis values denote the midpoint of each corresponding bin, i.e. a bin centered at 5.5 kb denotes a range from 5 to 6 kb and similarly, a bin centered at −2 kcal/mol has a range between 0 to −4 kcal/mol. (E) The most stable DR motifs in mtDNA major arc are associated with reported common deletions. Left and right breakpoint positions (denoted by open and close braces respectively) of common deletion , , , the flanking DR sequence (highlighted in red) and the calculated DR free energy value in human, rhesus monkey and rat mtDNA.

Similar articles

Cited by

References

    1. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79:469–480. - PMC - PubMed
    1. Cao Z, Wanagat J, McKiernan SH, Aiken JM. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: analysis by laser-capture microdissection. Nucleic Acids Res. 2001;29:4502–4508. - PMC - PubMed
    1. Eimon PM, Chung SS, Lee CM, Weindruch R, Aiken JM. Age-associated mitochondrial DNA deletions in mouse skeletal muscle: comparison of different regions of the mitochondrial genome. Dev Genet. 1996;18:107–113. - PubMed
    1. Gokey NG, Cao Z, Pak JW, Lee D, McKiernan SH, et al. Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell. 2004;3:319–326. - PubMed
    1. Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, et al. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci. 2007;62:235–245. - PMC - PubMed

Publication types

Substances