Relação de Planck-Einstein
Parte de uma série de artigos sobre |
Mecânica quântica |
---|
|
Fundamentos |
Experimentos |
Formulações |
Equações |
Tópicos avançados
|
Cientistas
|
A relação de Planck–Einstein[1][2][3] é também conhecida como relação de Einstein,[1][4][5] ou como relação de frequência-energia de Planck,[6] relação de Planck,[7] e equação de Planck.[8] A expressão fórmula de Planck[9] também pertence a esta lista, mas muitas vezes se refere à lei de Planck[10][11] Esses vários epônimos são usados de maneira esporádica. Referem-se a uma fórmula integral da mecânica quântica, que estabelece que a energia de um fóton E é proporcional à sua frequência, ν:
A constante de proporcionalidade, h, é conhecida como constante de Planck. Existem várias formas equivalentes da relação.
A relação explica a natureza quantizada da luz, e desempenha um papel decisivo no entendimento de fenômenos como o efeito fotoelétrico, e a lei de Planck da radiação de corpo negro.
Formas espectrais
[editar | editar código-fonte]A luz pode ser caracterizada usando várias quantidades espectrais, como a frequência ν, comprimento de onda λ, número de onda , e seus equivalentes angulares (frequência angular ω, comprimento de onda angular y, e número de onda angular k). Essas grandezas se relacionam pela equação
então a relação de Planck pode ter as seguintes formas "padrão"
assim como as seguintes formas 'angulares',
As formas padrão fazem uso da constante de Planck h. As formas angulares fazem uso da constante reduzida de Planck ħ = h2π. Aqui, c é a velocidade da luz.
Relação de de Broglie
[editar | editar código-fonte]A relação de de Broglie,[5][12][13] também conhecida como relação momento–comprimento de onda de de Broglie,[6] generaliza a relação de Planck para ondas de matéria. Louis de Broglie argumentou que se as partículas possuem natureza de onda, a relação E = hν também se aplicaria para elas, e postulou que as partículas teriam um comprimento de onda igual a λ = hp. Combinando o postulado de de Broglie com a relação de Planck–Einstein resulta em
- ou
A relação de de Broglie também é algumas vezes encontrada na forma vetorial
onde p é o vetor momento, e k é o vetor de onda angular.
Condição de frequência de Bohr
[editar | editar código-fonte]A condição de frequência de Bohr estabelece que a frequência de um fóton absorvido ou emitido durante uma transição eletrônica relaciona-se à diferença de energia (ΔE) entre os dois níveis de energia envolvidos na transição:[14]
Isso é uma consequência direta da relação de Planck–Einstein.
Referências
- ↑ a b French & Taylor (1978), pp. 24, 55.
- ↑ Cohen-Tannoudji, Diu & Laloë (1973/1977), pp. 10–11.
- ↑ Kalckar 1985, p. 39.
- ↑ Messiah (1958/1961), p. 72.
- ↑ a b Weinberg (1995), p. 3.
- ↑ a b Schwinger (2001), p. 203.
- ↑ Landsberg (1978), p. 199.
- ↑ Landé (1951), p. 12.
- ↑ Griffiths, D.J. (1995), pp. 143, 216.
- ↑ Griffiths, D.J. (1995), pp. 217, 312.
- ↑ Weinberg (2013), pp. 24, 28, 31.
- ↑ Messiah (1958/1961), p. 14.
- ↑ Cohen-Tannoudji, Diu & Laloë (1973/1977), p. 27.
- ↑ van der Waerden (1967), p. 5.
Bibliografia
[editar | editar código-fonte]- Cohen-Tannoudji, Claude; Diu, B.; Laloë, F. (1977) [1973]. Quantum Mechanics. 1. Traduzido por Hemley, S.R.; Ostrowsky, N.; Ostrowsky, D. 2ª ed. Nova York: Wiley.
- French, Anthony; Taylor, Edwin (1978). An Introduction to Quantum Physics. Londres: Van Nostrand Reinhold. ISBN 0-442-30770-5.
- Griffiths, D.J. (1995). Introduction to Quantum Mechanis. Upper Saddle River, Nova Jersey: Prentice Hall.
- Landé, A. (1951). Quantum Mechanics. Londres: Sir Isaac Pitman & Sons
- Landsberg, P.T. (1978). Thermodynamics and Statistical Mechanics. Oxford: Oxford University Press. ISBN 0-19-851142-6.
- Messiah, A. (1961) [1958]. Quantum Mechanics (PDF). 1. Traduzido por Temmer, G.M. Amsterdam: North-Holland.
- Schwinger, Julian (2001). Quantum Mechanics: Symbolism of Atomic Measurements. editato por B.-G. Englert. Berlin: Springer. ISBN 3-540-41408-8.
- van der Waerden, B.L. (1967). Sources of Quantum Mechanics. editado com uma introdução histórica de B.L. van der Waerden. Amsterdam: North-Holland.
- Weinberg, S. (1995). The Quantum Theory of Fields: Foundations. 1. Cambridge UK: Cambridge University Press. ISBN 978-0-521-55001-7.
- S., Weinberg (2013). Lectures on Quantum Mechanics. Cambridge: Cambridge University Press. ISBN 978-1-107-02872-2.