Saltar para o conteúdo

Escalar de curvatura de Ricci

Origem: Wikipédia, a enciclopédia livre.

Em matemática, a curvatura escalar de uma superfície é a familiar curvatura gaussiana. Para as variedades riemannianas de dimensão mais alta (n > 2), é o dobro da soma de todas as curvaturas seccionais ao longo de todos os 2-planos atravessados por um certo marco ortonormal. Matematicamente a curvatura escalar coincide também o traço total da curvatura de Ricci assim como do tensor de curvatura.

Expressão em componentes

[editar | editar código-fonte]

O escalar de curvatura de Ricci pode ser expresso em termos do tensor métrico (e suas derivadas primeiras) que define a geometria da superfície ou variedade riemanniana. Usando a convenção de soma de Einstein, obtemos

,

em que os símbolos de Christoffel que aparecem na expressão anterior são calculados a partir das derivadas primeiras das componentes do tensor métrico, isto é,

.

Também podemos representar o tensor escalar da curvatura de Ricci como

,

sendo o tensor de curvatura de Ricci.

Ícone de esboço Este artigo sobre geometria é um esboço. Você pode ajudar a Wikipédia expandindo-o.