Saltar para o conteúdo

Conjunto de Cantor

Origem: Wikipédia, a enciclopédia livre.

O conjunto de Cantor é um subconjunto do intervalo [0,1] definido pelo matemático Georg Cantor como limite de um processo iterativo.

Primeiros passos da construção do conjunto de Cantor

A construção do conjunto se faz por indução matemática:

  • Parte-se do intervalo ;
  • No passo 1, retira-se o terço do meio do intervalo:
  • No passo 2, retira-se o terço do meio de cada um dos dois intervalos criados pelo passo 1:
;


  • E recursivamente desta forma, no passo n, retira-se o terço do meio de cada um dos intervalos criados pelo passo n-1;


O conjunto de Cantor é definido como a intersecção dos conjuntos produzidos:

Qualquer número real entre 0 e 1 que pode ser expresso, na base 3, apenas usando-se os dígitos (trits) 0 e 2 é um elemento deste conjunto. Por exemplo, 1/3 = 0,1 (na base 3) pode ser escrito como 1/3 = 0,02222..., logo pertence ao conjunto. 1/2 = 0,1111... (na base 3) não pode, logo não pertence ao conjunto.

O conjunto de Cantor: