Indompeling (wiskunde)
Uiterlijk
In de wiskunde is een indompeling een differentieerbare afbeelding tussen differentieerbare variëteiten waarvan de afgeleide overal injectief is. Expliciet is f : M → N een indompeling als
een injectieve afbeelding is op elk punt p van M (waar de notatie de raakruimte vertegenwoordigt van op het punt ). Op equivalente wijze is f een indompeling als deze functie een constante rang heeft die gelijk is aan de dimensie van M:
De afbeelding f zelf hoeft niet injectief te zijn, de afgeleide echter wel.
Zie ook
[bewerken | brontekst bewerken]Referenties
[bewerken | brontekst bewerken]- (en) Embeddings and immersions (Inbeddingen en indompelingen), door Masahisa Adachi, in het Engels vertaald door Kiki Hudson
- (en) Smale, S, A classification of immersions of the two-sphere (Een classificatie van indompelingen van de 2-sfeer), Transactions of the American Mathematical Society, 90 1958 281–290.
- (en) Smale, S, The classification of immersions of spheres in Euclidean spaces (De classificatie van indompelingen van sferen in Euclidische ruimten), Ann. of Math. (2) 69 1959 327—344.