본문으로 이동

코쥘 복합체

위키백과, 우리 모두의 백과사전.

가환대수학에서 코쥘 복합체(Koszul複合體, 영어: Koszul complex)는 가환환의 가군 및 가군의 특별한 원소로부터 정의되는 미분 등급 대수이다. 이를 통하여 가군의 코쥘 코호몰로지(영어: Koszul cohomology)를 정의할 수 있다.

정의

[편집]

다음과 같은 데이터가 주어졌다고 하자.

  • (단위원을 갖는) 가환환
  • 위의 가군
  • -가군 준동형

그렇다면 외대수

쐐기곱을 통해 결합 등급 가환 -대수가 된다. 이 위에 다음과 같은 경계 사상을 정의하자.

여기서 쐐기곱에서 만을 제외한다는 뜻이다. 이므로, 사슬 복합체이자 미분 등급 대수를 이룬다. 이를 코쥘 복합체라고 한다.

-가군 및 사상 이 주어졌을 때, 코쥘 호몰로지는 그 코쥘 복합체의 호몰로지다.

마찬가지로, 코쥘 코호몰로지는 그 쌍대 복합체

의 코호몰로지다.

[편집]

가환환 계수

[편집]

이며 이라고 하자 (). 그렇다면, 코쥘 복합체는

이 된다. 즉, 이는 길이가 2인 사슬 복합체이며, 그 호몰로지는

이다 (소멸자).

자유 가군 계수

[편집]

마찬가지로, 자유 가군 이며

이라고 하자 (). 그렇다면, 코쥘 복합체는

가 되며, 복합체의 길이는 이 된다.

성질

[편집]

대수다양체스킴 위의 연접층층 코호몰로지는 코쥘 코호몰로지의 귀납적 극한으로 계산할 수 있다.

역사

[편집]

장루이 코쥘이 1950년에 리 대수 코호몰로지를 정의하기 위해 도입하였다.[1]

참고 문헌

[편집]

각주

[편집]
  1. Koszul, Jean-Louis (1950). “Homologie et cohomologie des algèbres de Lie”. 《Bulletin de la Société Mathématique de France》 (프랑스어) 78: 65–127. ISSN 0037-9484. MR 36511. Zbl 0039.02901. 

외부 링크

[편집]