이원수(二元數, 영어: dual number)는 실수에 하나의 멱영원을 추가하여 얻는 가환환이다. 복소수와 마찬가지로 2차원 -대수를 이루지만, 복소수와는 달리 체를 이루지 못한다.
이원수는 실수에 인 수 을 추가하여 얻는다. 엄밀히 말하자면, 이원수의 집합은 로 여길 수 있다. 이 경우, 를 으로 쓰자.다음과 같은 덧셈과 덧셈의 역, 곱셈을 정의할 수 있다.
이 연산들에 따라서, 이원수의 집합은 가환환을 이룬다.
이원수 는 2×2 행렬환 의 부분환으로 다음과 같이 나타낼 수 있다.
이원수의 집합은 (곱셈 항등원을 갖는) 가환환을 이루지만, 멱영원 이 존재하므로 정역을 이루지 않는다. 이원수환은 국소환을 이루며, 유일한 극대 아이디얼은 주 아이디얼 이다.
이원수환에서 가역원은 인 이며, 그 역은 다음과 같다.
이원수는 2차원 가환 결합 -대수를 이룬다.
이원수는 물리학에서 초대칭을 다룰 때 사용된다. 이원수의 공간은 초공간의 가장 간단한 예이며, 은 반가환수가 된다.
|
---|
복소수 | |
---|
자연수의 분류 | |
---|
유리수의 분류 | |
---|
실수의 분류 | |
---|
복소수의 분류 | |
---|
기타 | |
---|