본문으로 이동

윌슨 고리

위키백과, 우리 모두의 백과사전.

게이지 이론에서 윌슨 고리(Wilson loop)는 게이지 접속홀로노미인 게이지 불변 관측가능량이다.

정의

[편집]

게이지 퍼텐셜 를 가진 게이지 이론을 생각하자. 가 게이지 군의 표현이고, 폐곡선이라고 하자. 를 따른 윌슨 고리 는 다음과 같다.

.

여기서 경로순서(path-ordering) 연산자이다.

대각합 연산자에 의하여, 윌슨 고리는 게이지 불변 연산자이다.

가둠 상전이

[편집]

윌슨 고리는 가두어진 (confined)과 가두어지지 않은 상(deconfinement phase) 사이의 상전이에 대한 질서 변수(order parameter) 역할을 한다. 시간 방향으로 길쭉한 모양의 윌슨 고리(temporal Wilson loop)를 생각하자. 이 경우, 윌슨 고리는 가둠의 존재에 따라 다음과 같은 양상을 보인다. 곡선 가 곡면 를 감싼다고 하면, 윌슨 고리의 로그

  • 가두어진 상에서는 의 넓이에 비례한다.
  • 가두어지지 않은 상에서는 의 길이 (의 둘레)에 비례한다.

이를 넓이 법칙(영어: area law) 또는 둘레 법칙(영어: perimeter law)이라고 부른다. 즉, 윌슨 고리를 계산하여 가둠이 일어나는지 확인할 수 있다.

역사

[편집]

케네스 윌슨가둠을 다루기 위하여 1974년 도입하였다.[1] 1981년에 로스코 자일스(Roscoe Giles)가 윌슨 고리의 데이터만으로 게이지 퍼텐셜 전체를 (고전적으로) 재구성할 수 있다는 사실을 증명하였다.[2]

같이 보기

[편집]

각주

[편집]
  1. Wilson, Kenneth G. (1974년 10월 15일). “Confinement of quarks”. 《Physical Review D》 10 (8): 2445–2459. doi:10.1103/PhysRevD.10.2445. 
  2. Giles, R. (1981년 10월 15일). “Reconstruction of gauge potentials from Wilson loops”. 《Physical Review D》 24 (8): 2160–2168. doi:10.1103/PhysRevD.24.2160.