三斜晶系(さんしゃしょうけい、: triclinic crystal system)は、7つの結晶系の1つ。対応するブラベー格子は、単純三斜格子の1種類のみ。

三斜晶系の例:微斜長石
三斜晶系 (a ≠ b ≠ cかつα ≠ β ≠ γ )

結晶系は、3つのベクトルで表現できる。三斜晶系では、直方晶系のように異なる長さのベクトルで表される。さらに、互いに直交するベクトルはない。14個のブラベー格子の中で最も対称性が低いものであり、全ての格子が持つ最小限の対称性のみ持つ。

結晶の分類

編集

三斜晶系結晶の例、シェーンフリース記号ヘルマン・モーガン記号[1]点群オービフォルド記号英語版、型、空間群が以下の表に掲載されている。合計2つの空間群が存在する。

# 点群 タイプ 空間群
分類 Schoen. Intl Orb. Cox.
1 Pedial [2] C1 1 11 [ ]+ くさび石 enantiomorphic, polar P1
2 Pinacoidal [2] Ci (= S2) 1 [2+,2+] 珪灰石 centrosymmetric P1

それぞれ、関連する空間群は1つだけである。Pinacoidalはtriclinic normal、Pedialはtriclinic hemihedralとしても知られる。

鉱物の例には、斜長石微斜長石ばら輝石トルコ石珪灰石アンブリゴナイト等があり、これらは全てPinacoidal型である。

出典

編集
  1. ^ Prince, E., ed (2006). International Tables for Crystallography. International Union of Crystallography. doi:10.1107/97809553602060000001. ISBN 978-1-4020-4969-9 
  2. ^ a b The 32 crystal classes”. 2008年9月19日時点のオリジナルよりアーカイブ。2009年7月8日閲覧。
  • Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., pp. 64 – 65, ISBN 0-471-80580-7