International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
Autism spectrum disorder (ASD) represents a major mental health problem with estimates of prevale... more Autism spectrum disorder (ASD) represents a major mental health problem with estimates of prevalence ranging from 1/500 to 1/2000. While generally recognized as developmental in origin, little to nothing is certain about its etiology. Currently, diagnosis is made on the basis of a variety of early developmental delays and/or regressions in behavior. There are no universally agreed upon changes in brain structure or cell composition. No biomarkers of any type are available to aid or confirm the clinical diagnosis. In addition, while estimates of the heritability of the condition range from 60 to 90%, as of this writing no disease gene has been unequivocally identified. The prevalence of autism is three- to four-fold higher in males than in females, but the reason for this sexual dimorphism is unknown. In light of all of these ambiguities, a proposal to discuss potential animal models may seem the heart of madness. However, parsing autism into its individual genetic, behavioral, and n...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 2001
Rocker (gene symbol rkr), a new neurological mutant phenotype, was found in descendents of a chem... more Rocker (gene symbol rkr), a new neurological mutant phenotype, was found in descendents of a chemically mutagenized male mouse. Mutant mice display an ataxic, unstable gait accompanied by an intention tremor, typical of cerebellar dysfunction. These mice are fertile and appear to have a normal life span. Segregation analysis reveals rocker to be an autosomal recessive trait. The overall cytoarchitecture of the young adult brain appears normal, including its gross cerebellar morphology. Golgi-Cox staining, however, reveals dendritic abnormalities in the mature cerebellar cortex characterized by a reduction of branching in the Purkinje cell dendritic arbor and a "weeping willow" appearance of the secondary branches. Using simple sequence length polymorphism markers, the rocker locus was mapped to mouse chromosome 8 within 2 centimorgans of the calcium channel alpha1a subunit (Cacna1a, formerly known as tottering) locus. Complementation tests with the leaner mutant allele (Ca...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 1999
Cyclin-dependent kinase 5 (Cdk5) is a member of the family of cell cycle-related kinases. Previou... more Cyclin-dependent kinase 5 (Cdk5) is a member of the family of cell cycle-related kinases. Previous neuropathological analysis of cdk5(-/-) mice showed significant changes in CNS development in regions from cerebral cortex to brainstem. Among the defects in these animals, a disruption of the normal pattern of cell migrations in cerebellum was particularly apparent, including a pronounced abnormality in the location of cerebellar Purkinje cells. Complete analysis of this brain region is hampered in the mutant because most of cerebellar morphogenesis occurs after birth and the cdk5(-/-) mice die in the perinatal period. To overcome this disadvantage, we have generated chimeric mice by injection of cdk5(-/-) embryonic stem cells into host blastocysts. Analysis of the cerebellum from the resulting cdk5(-/-) left arrow over right arrow cdk5(+/+) chimeric mice shows that the abnormal location of the mutant Purkinje cells is a cell-autonomous defect. In addition, significant numbers of gran...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 11, 2015
Deficiency of cyclin-dependent kinase 5 (Cdk5) has been linked to the death of postmitotic cortic... more Deficiency of cyclin-dependent kinase 5 (Cdk5) has been linked to the death of postmitotic cortical neurons during brain development. We now report that, in mouse cortical neurons, Cdk5 is capable of phosphorylating the transcription factor FOXO1 at Ser249 in vitro and in vivo. Cellular stresses resulting from extracellular stimulation by H2O2 or β-amyloid promote hyperactivation of Cdk5, FOXO1 nuclear export and inhibition of its downstream transcriptional activity. In contrast, a loss of Cdk5 leads to FOXO1 translocation into the nucleus: a shift due to decreased AKT activity but independent of S249 phosphorylation. Nuclear FOXO1 upregulates transcription of the proapoptotic gene, BIM, leading to neuronal death, which can be rescued when endogenous FOXO1 was replaced by the cytoplasmically localized form of FOXO1, FOXO1-S249D. Cytoplasmic, but not nuclear, Cdk5 attenuates neuronal death by inhibiting FOXO1 transcriptional activity and BIM expression. Together, our findings suggest...
... Cdk5 also functions in the synapse to regulate endocytosis, an important step in synaptic tra... more ... Cdk5 also functions in the synapse to regulate endocytosis, an important step in synaptic transmission (Tomizawa et al., 2002; Tan et al ... These non-cyclin activators include the viral-based cyclin, cyclin H, and the RINGO/Speedy proteins, which were originally identified as ...
ABSTRACT The concept of cell cycle-related neuronal death (CRND) has now been in the literature f... more ABSTRACT The concept of cell cycle-related neuronal death (CRND) has now been in the literature for more than a decade. The first evidence linking the loss of cell cycle control with neuronal death arose from studies in transgenic mice in which cell cycle progression was artificially induced in postmitotic neurons during development. Substantial neuronal loss was observed in each instance, suggesting that differentiated neurons make a commitment to maturation that includes a permanent cessation of cell division. In agreement, naturally occurring neuronal death during development involves a re-expression of several cell cycle markers and DNA synthesis. Today, a growing literature supports the view that cell cycle induction in adult neurons may be equally lethal. A large fraction of this literature is based on correlative observations of cell cycle-associated proteins in neurons at risk for death in a variety of neurodegenerative diseases and central nervous system insults. Our intent is not to rehash this information yet again, but instead to discuss the limitations of current approaches and identify gaps in our present knowledge. In doing so, we have attempted to highlight promising avenues of future investigation, which may bring clarity to the realities regarding CRND in multiple neurodegenerative disorders.
Proceedings of the National Academy of Sciences of the United States of America, Jan 11, 2014
Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) are tau kinases and have... more Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) are tau kinases and have been proposed to contribute to the pathogenesis of Alzheimer's disease. The 3D structures of these kinases are remarkably similar, which led us to hypothesize that both might be capable of binding cyclin proteins--the activating cofactors of all CDKs. CDK5 is normally activated by the cyclin-like proteins p35 and p39. By contrast, we show that GSK3β does not bind to p35 but unexpectedly binds to p25, the calpain cleavage product of p35. Indeed, overexpressed GSK3β outcompetes CDK5 for p25, whereas CDK5 is the preferred p35 partner. FRET analysis reveals nanometer apposition of GSK3β:p25 in cell soma as well as in synaptic regions. Interaction with p25 also alters GSK3β substrate specificity. The GSK3β:p25 interaction leads to enhanced phosphorylation of tau, but decreased phosphorylation of β-catenin. A partial explanation for this situation comes from in silico modeling, which pred...
Alzheimer's disease is late life dementia associated with... more Alzheimer's disease is late life dementia associated with significant neurodegeneration in both cortical and subcortical regions. During the approximately 10 year course of the disease, neurons are lost in a progressive pattern that is relatively consistent among individuals. One example of this is the progression of disease pathology found in both the neocortex and archicortex. In these structures, the earliest problems can be found in superficial cortical layers (II-IV), whereas later the disease advances to involve the deeper cortical layers (V-VI). It is unclear whether these apparent differences in sensitivity are intrinsic to the neurons or imposed by external factors such as the pattern of connections. We used beta-amyloid (Abeta) peptide treatment of cultured mouse neurons as our model system. We show first that, as in hippocampus, dissociated cultures of embryonic cortical neurons are biased toward the survival of cells that were finishing division in the ventricular zone at the time of harvest. Thus, embryonic day 13.5 (E13.5) cultures contain primarily deep-layer neurons whereas E16.5 cultures contain cells destined for upper layers. We use this cell-type specific segregation to our advantage and show, using both differences in gene expression profiles and Abeta survival curves, that deeper layer neurons are significantly more resistant to the toxic effects of Abeta than are cells from the more superficial strata. This suggests that an intrinsic underlying biology drives at least part of the AD progression pattern and that the time of harvest is a crucial variable in the interpretation of any cortical culture experiment.
Gene targeting was used to create a null allele at the epidermal growth factor receptor locus (Eg... more Gene targeting was used to create a null allele at the epidermal growth factor receptor locus (Egfr). The phenotype was dependent on genetic background. EGFR deficiency on a CF-1 background resulted in peri-implantation death due to degeneration of the inner cell mass. On a 129/Sv background, homozygous mutants died at mid-gestation due to placental defects; on a CD-1 background, the mutants lived for up to 3 weeks and showed abnormalities in skin, kidney, brain, liver, and gastrointestinal tract. The multiple abnormalities associated with EGFR deficiency indicate that the receptor is involved in a wide range of cellular activities.
Primary neuronal cultures are commonly used to dissect the molecular and cellular mechanisms that... more Primary neuronal cultures are commonly used to dissect the molecular and cellular mechanisms that underlie human brain diseases. Neurons dissociated from an embryonic brain and grown in culture dishes are almost by definition different from those residing inside a living brain. Not only are the individual cells stripped of their normal chemical and physical contacts, but the cellular composition of the cultures (the ratio of cell types) can be affected by many intrinsic and extrinsic factors, including brain region, neuronal birthday, gender, genetic background and in vitro age. Changes in any of these factors may have a strong impact on the outcome of the experiment. In a recent study, Romito-DiGiacomo et al. /54/ demonstrated that when neurons were harvested from murine embryonic cortex, the typical protocol favored cells that were just finishing cell division at the time of harvest. By taking advantage of the fact that the date of the final cell division (birthday) of a neuron correlates with its final position in the cortical plate they were able to assay deeper layer neurons (layers V-VI) separately from the more superficial layers (layers II-III). They reported that while the superficial cells were sensitive to the toxic effect of beta-amyloid, the deeper layer neurons were virtually resistant to death in its presence. The findings recapitulate selective vulnerability in the neocortex of Alzheimer's disease. This is a beautiful example of how to turn the apparent weakness of primary cultures into strength through experimental design and data interpretation. Selective vulnerability is a common feature of neurodegenerative disease, thus it is critical to use the right primary culture. Do you know what is in your culture?
International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
Autism spectrum disorder (ASD) represents a major mental health problem with estimates of prevale... more Autism spectrum disorder (ASD) represents a major mental health problem with estimates of prevalence ranging from 1/500 to 1/2000. While generally recognized as developmental in origin, little to nothing is certain about its etiology. Currently, diagnosis is made on the basis of a variety of early developmental delays and/or regressions in behavior. There are no universally agreed upon changes in brain structure or cell composition. No biomarkers of any type are available to aid or confirm the clinical diagnosis. In addition, while estimates of the heritability of the condition range from 60 to 90%, as of this writing no disease gene has been unequivocally identified. The prevalence of autism is three- to four-fold higher in males than in females, but the reason for this sexual dimorphism is unknown. In light of all of these ambiguities, a proposal to discuss potential animal models may seem the heart of madness. However, parsing autism into its individual genetic, behavioral, and n...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 2001
Rocker (gene symbol rkr), a new neurological mutant phenotype, was found in descendents of a chem... more Rocker (gene symbol rkr), a new neurological mutant phenotype, was found in descendents of a chemically mutagenized male mouse. Mutant mice display an ataxic, unstable gait accompanied by an intention tremor, typical of cerebellar dysfunction. These mice are fertile and appear to have a normal life span. Segregation analysis reveals rocker to be an autosomal recessive trait. The overall cytoarchitecture of the young adult brain appears normal, including its gross cerebellar morphology. Golgi-Cox staining, however, reveals dendritic abnormalities in the mature cerebellar cortex characterized by a reduction of branching in the Purkinje cell dendritic arbor and a "weeping willow" appearance of the secondary branches. Using simple sequence length polymorphism markers, the rocker locus was mapped to mouse chromosome 8 within 2 centimorgans of the calcium channel alpha1a subunit (Cacna1a, formerly known as tottering) locus. Complementation tests with the leaner mutant allele (Ca...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 15, 1999
Cyclin-dependent kinase 5 (Cdk5) is a member of the family of cell cycle-related kinases. Previou... more Cyclin-dependent kinase 5 (Cdk5) is a member of the family of cell cycle-related kinases. Previous neuropathological analysis of cdk5(-/-) mice showed significant changes in CNS development in regions from cerebral cortex to brainstem. Among the defects in these animals, a disruption of the normal pattern of cell migrations in cerebellum was particularly apparent, including a pronounced abnormality in the location of cerebellar Purkinje cells. Complete analysis of this brain region is hampered in the mutant because most of cerebellar morphogenesis occurs after birth and the cdk5(-/-) mice die in the perinatal period. To overcome this disadvantage, we have generated chimeric mice by injection of cdk5(-/-) embryonic stem cells into host blastocysts. Analysis of the cerebellum from the resulting cdk5(-/-) left arrow over right arrow cdk5(+/+) chimeric mice shows that the abnormal location of the mutant Purkinje cells is a cell-autonomous defect. In addition, significant numbers of gran...
The Journal of neuroscience : the official journal of the Society for Neuroscience, Jan 11, 2015
Deficiency of cyclin-dependent kinase 5 (Cdk5) has been linked to the death of postmitotic cortic... more Deficiency of cyclin-dependent kinase 5 (Cdk5) has been linked to the death of postmitotic cortical neurons during brain development. We now report that, in mouse cortical neurons, Cdk5 is capable of phosphorylating the transcription factor FOXO1 at Ser249 in vitro and in vivo. Cellular stresses resulting from extracellular stimulation by H2O2 or β-amyloid promote hyperactivation of Cdk5, FOXO1 nuclear export and inhibition of its downstream transcriptional activity. In contrast, a loss of Cdk5 leads to FOXO1 translocation into the nucleus: a shift due to decreased AKT activity but independent of S249 phosphorylation. Nuclear FOXO1 upregulates transcription of the proapoptotic gene, BIM, leading to neuronal death, which can be rescued when endogenous FOXO1 was replaced by the cytoplasmically localized form of FOXO1, FOXO1-S249D. Cytoplasmic, but not nuclear, Cdk5 attenuates neuronal death by inhibiting FOXO1 transcriptional activity and BIM expression. Together, our findings suggest...
... Cdk5 also functions in the synapse to regulate endocytosis, an important step in synaptic tra... more ... Cdk5 also functions in the synapse to regulate endocytosis, an important step in synaptic transmission (Tomizawa et al., 2002; Tan et al ... These non-cyclin activators include the viral-based cyclin, cyclin H, and the RINGO/Speedy proteins, which were originally identified as ...
ABSTRACT The concept of cell cycle-related neuronal death (CRND) has now been in the literature f... more ABSTRACT The concept of cell cycle-related neuronal death (CRND) has now been in the literature for more than a decade. The first evidence linking the loss of cell cycle control with neuronal death arose from studies in transgenic mice in which cell cycle progression was artificially induced in postmitotic neurons during development. Substantial neuronal loss was observed in each instance, suggesting that differentiated neurons make a commitment to maturation that includes a permanent cessation of cell division. In agreement, naturally occurring neuronal death during development involves a re-expression of several cell cycle markers and DNA synthesis. Today, a growing literature supports the view that cell cycle induction in adult neurons may be equally lethal. A large fraction of this literature is based on correlative observations of cell cycle-associated proteins in neurons at risk for death in a variety of neurodegenerative diseases and central nervous system insults. Our intent is not to rehash this information yet again, but instead to discuss the limitations of current approaches and identify gaps in our present knowledge. In doing so, we have attempted to highlight promising avenues of future investigation, which may bring clarity to the realities regarding CRND in multiple neurodegenerative disorders.
Proceedings of the National Academy of Sciences of the United States of America, Jan 11, 2014
Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) are tau kinases and have... more Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) are tau kinases and have been proposed to contribute to the pathogenesis of Alzheimer's disease. The 3D structures of these kinases are remarkably similar, which led us to hypothesize that both might be capable of binding cyclin proteins--the activating cofactors of all CDKs. CDK5 is normally activated by the cyclin-like proteins p35 and p39. By contrast, we show that GSK3β does not bind to p35 but unexpectedly binds to p25, the calpain cleavage product of p35. Indeed, overexpressed GSK3β outcompetes CDK5 for p25, whereas CDK5 is the preferred p35 partner. FRET analysis reveals nanometer apposition of GSK3β:p25 in cell soma as well as in synaptic regions. Interaction with p25 also alters GSK3β substrate specificity. The GSK3β:p25 interaction leads to enhanced phosphorylation of tau, but decreased phosphorylation of β-catenin. A partial explanation for this situation comes from in silico modeling, which pred...
Alzheimer's disease is late life dementia associated with... more Alzheimer's disease is late life dementia associated with significant neurodegeneration in both cortical and subcortical regions. During the approximately 10 year course of the disease, neurons are lost in a progressive pattern that is relatively consistent among individuals. One example of this is the progression of disease pathology found in both the neocortex and archicortex. In these structures, the earliest problems can be found in superficial cortical layers (II-IV), whereas later the disease advances to involve the deeper cortical layers (V-VI). It is unclear whether these apparent differences in sensitivity are intrinsic to the neurons or imposed by external factors such as the pattern of connections. We used beta-amyloid (Abeta) peptide treatment of cultured mouse neurons as our model system. We show first that, as in hippocampus, dissociated cultures of embryonic cortical neurons are biased toward the survival of cells that were finishing division in the ventricular zone at the time of harvest. Thus, embryonic day 13.5 (E13.5) cultures contain primarily deep-layer neurons whereas E16.5 cultures contain cells destined for upper layers. We use this cell-type specific segregation to our advantage and show, using both differences in gene expression profiles and Abeta survival curves, that deeper layer neurons are significantly more resistant to the toxic effects of Abeta than are cells from the more superficial strata. This suggests that an intrinsic underlying biology drives at least part of the AD progression pattern and that the time of harvest is a crucial variable in the interpretation of any cortical culture experiment.
Gene targeting was used to create a null allele at the epidermal growth factor receptor locus (Eg... more Gene targeting was used to create a null allele at the epidermal growth factor receptor locus (Egfr). The phenotype was dependent on genetic background. EGFR deficiency on a CF-1 background resulted in peri-implantation death due to degeneration of the inner cell mass. On a 129/Sv background, homozygous mutants died at mid-gestation due to placental defects; on a CD-1 background, the mutants lived for up to 3 weeks and showed abnormalities in skin, kidney, brain, liver, and gastrointestinal tract. The multiple abnormalities associated with EGFR deficiency indicate that the receptor is involved in a wide range of cellular activities.
Primary neuronal cultures are commonly used to dissect the molecular and cellular mechanisms that... more Primary neuronal cultures are commonly used to dissect the molecular and cellular mechanisms that underlie human brain diseases. Neurons dissociated from an embryonic brain and grown in culture dishes are almost by definition different from those residing inside a living brain. Not only are the individual cells stripped of their normal chemical and physical contacts, but the cellular composition of the cultures (the ratio of cell types) can be affected by many intrinsic and extrinsic factors, including brain region, neuronal birthday, gender, genetic background and in vitro age. Changes in any of these factors may have a strong impact on the outcome of the experiment. In a recent study, Romito-DiGiacomo et al. /54/ demonstrated that when neurons were harvested from murine embryonic cortex, the typical protocol favored cells that were just finishing cell division at the time of harvest. By taking advantage of the fact that the date of the final cell division (birthday) of a neuron correlates with its final position in the cortical plate they were able to assay deeper layer neurons (layers V-VI) separately from the more superficial layers (layers II-III). They reported that while the superficial cells were sensitive to the toxic effect of beta-amyloid, the deeper layer neurons were virtually resistant to death in its presence. The findings recapitulate selective vulnerability in the neocortex of Alzheimer's disease. This is a beautiful example of how to turn the apparent weakness of primary cultures into strength through experimental design and data interpretation. Selective vulnerability is a common feature of neurodegenerative disease, thus it is critical to use the right primary culture. Do you know what is in your culture?
Uploads
Papers by Karl Herrup