Lompat ke isi

Fungsi theta

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas


Fungsi theta asli Jacobi θ1 dengan u = iπz dan dengan nome q = eiπτ = 0.1e0.1iπ. Konvensi adalah (Mathematica):

Dalam matematika, Fungsi theta adalah fungsi khusus dari beberapa variabel kompleks. Mereka penting di banyak bidang, termasuk teori varietas abelian dan ruang moduli, dan bentuk kuadrat. Mereka juga telah diterapkan pada teori soliton. Ketika digeneralisasi menjadi aljabar Grassmann, mereka juga muncul di teori medan kuantum.[1]

Bentuk fungsi theta yang paling umum adalah yang terjadi dalam teori fungsi eliptik. Sehubungan dengan salah satu variabel kompleks (secara konvensional disebut z), fungsi theta memiliki properti yang mengekspresikan perilakunya sehubungan dengan penambahan periode fungsi eliptik terkait, menjadikannya fungsi kuasiperiodik. Dalam teori abstrak ini berasal dari bundel garis kondisi keturunan.

Fungsi theta Jacobi

[sunting | sunting sumber]
Jacobi theta 1
Jacobi theta 2
Jacobi theta 3
Jacobi theta 4

Ada beberapa fungsi yang terkait erat yang disebut fungsi jacobi theta, dan banyak sistem notasi yang berbeda dan tidak kompatibel untuk fungsi tersebut. Fungsi theta Jacobi (dinamai Carl Gustav Jacob Jacobi) merupakan fungsi yang ditentukan untuk dua variabel kompleks z dan τ, dimana z dapat berupa bilangan kompleks apa pun dan τ adalah rasio setengah periode, terbatas pada bidang setengah atas, yang berarti ia memiliki bagian imajiner positif. Itu diberikan oleh rumus

dimana q = exp(π) adalah nome dan η = exp(2πiz). Ini adalah bentuk Jacobi. Pada τ, ini adalah deret Fourier untuk 1-periodik seluruh fungsi dari z. Karenanya, fungsi theta adalah 1-periodik in z:

Ternyata juga menjadi τ kuasiperiodik dalam z, dengan

Jadi, secara umum,

untuk semua bilangan bulat a dan b.

Fungsi theta θ1 dengan nomor berbeda q = eiπτ. Titik hitam di gambar sebelah kanan menunjukkan caranya q berubah dengan τ.
Fungsi theta θ1 dengan nomor berbeda q = eiπτ. Titik hitam di gambar sebelah kanan menunjukkan caranya q berubah dengan τ.

Fungsi pembantu

[sunting | sunting sumber]

Fungsi theta Jacobi yang didefinisikan di atas terkadang dipertimbangkan bersama dengan tiga fungsi theta tambahan, dalam hal ini ditulis dengan subskrip 0 ganda:

Fungsi bantu (atau setengah periode) ditentukan oleh

Notasi ini mengikuti Riemann dan Mumford; Formulasi asli Jacobi adalah dalam istilah nome q = eiπτ daripada τ. Dalam notasi Jacobi θ adalah fungsi tertulis:

Definisi di atas dari fungsi Jacobi theta sama sekali tidak unik. Lihat Fungsi jacobi theta (variasi notasi) untuk pembahasan lebih lanjut.

Bila kita mengatur z = 0 dalam fungsi theta di atas, kita mendapatkan empat fungsi dari τ saja, yang ditentukan pada setengah bidang atas (terkadang disebut konstanta teta.) Mak ini dapat digunakan untuk mendefinisikan berbagai bentuk modular, dan untuk mengukur kurva tertentu; khususnya, identitas Jacobi adalah

yang merupakan kurva Fermat dari derajat empat.

Identitas Jacobi

[sunting | sunting sumber]

Identitas Jacobi menggambarkan bagaimana fungsi theta berubah di bawah kelompok modular, yang dihasilkan oleh ττ + 1 dan τ ↦ −1τ. Persamaan untuk transformasi pertama mudah ditemukan sejak menambahkan satu ke τ dalam eksponen memiliki efek yang sama seperti penjumlahan 12 ke z (nn2 mod 2). Untuk yang kedua, maka

Kemudian

Fungsi theta dalam istilah nome

[sunting | sunting sumber]

Alih-alih mengekspresikan fungsi theta dalam istilah z dan τ, kita dapat mengungkapkannya dalam istilah argumen w dan nome q, dimana w = eπiz dan q = eπ. Dalam bentuk ini, fungsinya menjadi

Kita melihat bahwa fungsi theta juga bisa didefinisikan dalam istilah w dan q, tanpa referensi langsung ke fungsi eksponensial. Oleh karena itu, rumus-rumus ini dapat digunakan untuk mendefinisikan fungsi Theta di atas bidang lain di mana fungsi eksponensial mungkin tidak dapat didefinisikan di mana-mana, seperti bidang bilangan p-adic.

Wakilan integral

[sunting | sunting sumber]

Fungsi Jacobi theta memiliki wakilan integral berikut:

Nilai eksplisit

[sunting | sunting sumber]

Lihat Yi (2004).[2][3]

Beberapa identitas deret

[sunting | sunting sumber]

Dua identitas seri berikutnya dibuktikan oleh István Mező:[4]

These relations hold for all 0 < q < 1. Specializing the values of q, we have the next parameter free sums

Nol dari fungsi theta Jacobi

[sunting | sunting sumber]

Semua angka nol dari fungsi theta Jacobi adalah angka nol sederhana dan diberikan sebagai berikut:

dimana m, n adalah bilangan bulat acak.

Kaitannya dengan fungsi zeta Riemann

[sunting | sunting sumber]

Relasi

digunakan oleh Riemann untuk membuktikan persamaan fungsional untuk fungsi zeta Riemann, dengan menggunakan transformasi Mellin

yang dapat ditampilkan sebagai invarian di bawah substitusi s oleh 1 − s. Integral terkait untuk z ≠ 0 diberikan dalam artikel di Fungsi zeta Hurwitz.

Kaitannya dengan fungsi q-gamma

[sunting | sunting sumber]

Fungsi theta keempat dan dengan demikian yang lainnya juga terhubung erat ke fungsi gamma-q Jackson melalui relasi[5]

Hubungan dengan fungsi eta Dedekind

[sunting | sunting sumber]

Maka η(τ) menjadi Dedekind eta function, dan argumen dari fungsi theta sebagai nome q = eπ. Then,

dan,

Lihat pula Fungsi modular Weber.

Modulus elips

[sunting | sunting sumber]

Modulus eliptik adalah

dan modulus eliptik komplementernya adalah

Solusi untuk persamaan panas

[sunting | sunting sumber]

Kaitannya dengan kelompok Heisenberg

[sunting | sunting sumber]

Fungsi Jacobi theta tidak berubah di bawah aksi subkelompok diskrit dari kelompok Heisenberg. Pembalikan ini disajikan dalam artikel di representasi theta dari kelompok Heisenberg.


  1. ^ Tyurin, Andrey N. (30 October 2002). "Quantization, Classical and Quantum Field Theory and Theta-Functions". arΧiv:math/0210466v1. 
  2. ^ Yi, Jinhee (2004). "Theta-function identities and the explicit formulas for theta-function and their applications". Journal of Mathematical Analysis and Applications. 292 (2): 381–400. doi:10.1016/j.jmaa.2003.12.009alt=Dapat diakses gratis. 
  3. ^ Proper credit for these results goes to Ramanujan. See Ramanujan's lost notebook and a relevant reference at Euler function. The Ramanujan results quoted at Euler function plus a few elementary operations give the results below, so the results below are either in Ramanujan's lost notebook or follow immediately from it.
  4. ^ Mező, István (2013), "Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions", Proceedings of the American Mathematical Society, 141 (7): 2401–2410, doi:10.1090/s0002-9939-2013-11576-5alt=Dapat diakses gratis 
  5. ^ Mező, István (2012). "A q-Raabe formula and an integral of the fourth Jacobi theta function". Journal of Number Theory. 133 (2): 692–704. doi:10.1016/j.jnt.2012.08.025alt=Dapat diakses gratis. 

Referensi

[sunting | sunting sumber]

Bacaan lebih lanjut

[sunting | sunting sumber]

Harry Rauch with Hershel M. Farkas: Theta functions with applications to Riemann Surfaces, Williams and Wilkins, Baltimore MD 1974, ISBN 0-683-07196-3.

Pranala luar

[sunting | sunting sumber]

Templat:PlanetMath attribution