Trigonometri merupakan salah satu cabang matematika yang mempelajari sudut dalam segitiga siku-siku (yang dijelaskan secara geometri). Identitas trigonometri merupakan salah satu fungsi trigonometri dimana rumus tersebut memiliki hasil yang sama bila diuji suatu nilai variabel . Identitas berikut ini sangatlah penting dan berguna dalam komputasi yang elusif.
Daftar ini menjelaskan dasar-dasar fungsi, invers fungsi, beserta nilai sudut istimewa pada fungsi trigonometri. Dan juga mengenai jumlah dan perkalian sudut. Mengenai daftar identitas fungsi invers juga dimasukkan ke dalam halaman ini. Terdapat bukti-bukti mengenai rumus-rumus di bawah. Meski begitu, halaman ini hanya menjelaskan bukti singkat pada rumus dan adapula yang tidak. Untuk melihat bukti, lihat Bukti identitas trigonometri . Berikut adalah daftar identitas trigonometri .
Segitiga siku-siku
A
B
C
{\displaystyle ABC}
dimana
A
C
=
b
{\displaystyle AC=b}
dan
B
C
=
a
{\displaystyle BC=a}
adalah sisi segitiga dan
A
B
=
c
{\displaystyle AB=c}
adalah hipotenusa .
Salah satu fungsi trigonometri paling umum, semenjak kita duduk di bangku sekolah menengah atas adalah fungsi trigonometri seperti sinus , kosinus , tangen , sekan , kosekan , dan kotangen . Secara geometri, keenam fungsi trigonometri tersebut dapat didefinisikan melalui sudut pada segitiga. Misalkan
A
B
C
{\displaystyle ABC}
adalah segitiga siku-siku ,
a
{\displaystyle a}
dan
b
{\displaystyle b}
adalah sisi-sisi segitiga beserta
c
{\displaystyle c}
adalah hipotenusa atau sisi miring segitiga. Misalkan
A
{\displaystyle A}
adalah sudut yang diketahui. Maka,
sin
A
=
a
c
{\displaystyle \sin A={\frac {a}{c}}}
cos
A
=
b
c
{\displaystyle \cos A={\frac {b}{c}}}
tan
A
=
a
b
=
sin
A
cos
A
{\displaystyle \tan A={\frac {a}{b}}={\frac {\sin A}{\cos A}}}
cot
A
=
1
tan
A
=
cos
A
sin
A
=
b
a
{\displaystyle \cot A={\frac {1}{\tan A}}={\frac {\cos A}{\sin A}}={\frac {b}{a}}}
sec
A
=
1
cos
A
=
c
b
{\displaystyle \sec A={\frac {1}{\cos A}}={\frac {c}{b}}}
.
csc
A
=
1
sin
A
=
c
a
{\displaystyle \csc A={\frac {1}{\sin A}}={\frac {c}{a}}}
.
Keenam fungsi trigonometri di atas memiliki grafik, dengan ranah dan kisaran pada setiap dari mereka adalah berbeda, terutama periodenya. Berikut adalah daftar fungsi trigonometri yang ditabelkan, dengan periode, ranah, kisaran, beserta visualisasi grafik fungsi.
Fungsi
Periode
Ranah
Kisaran
Grafik
sinus
2
π
{\displaystyle 2\pi }
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
[
−
1
,
1
]
{\displaystyle [-1,1]}
kosinus
2
π
{\displaystyle 2\pi }
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
[
−
1
,
1
]
{\displaystyle [-1,1]}
tangen
π
{\displaystyle \pi }
x
≠
n
π
{\displaystyle x\neq n\pi }
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
sekan
2
π
{\displaystyle 2\pi }
x
≠
π
2
+
n
π
{\displaystyle x\neq {\frac {\pi }{2}}+n\pi }
(
−
∞
,
−
1
]
∪
[
1
,
∞
)
{\displaystyle (-\infty ,-1]\cup [1,\infty )}
kosekan
2
π
{\displaystyle 2\pi }
x
≠
π
2
+
n
π
{\displaystyle x\neq {\frac {\pi }{2}}+n\pi }
(
−
∞
,
−
1
]
∪
[
1
,
∞
)
{\displaystyle (-\infty ,-1]\cup [1,\infty )}
kotangen
π
{\displaystyle \pi }
x
≠
n
π
{\displaystyle x\neq n\pi }
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
Berikut adalah nilai sudut istimewa pada keenam fungsi trigonometri:
Sinus
Kosinus
Tangen
Kotangen
Sekan
Kosekan
0°
0
{\displaystyle 0}
1
{\displaystyle 1}
0
{\displaystyle 0}
∞
{\displaystyle \infty }
1
{\displaystyle 1}
∞
{\displaystyle \infty }
8°
2
10
{\displaystyle {\frac {\sqrt {2}}{10}}}
7
2
10
{\displaystyle {\frac {7{\sqrt {2}}}{10}}}
1
7
{\displaystyle {\frac {1}{7}}}
7
{\displaystyle 7}
5
2
7
{\displaystyle {\frac {5{\sqrt {2}}}{7}}}
5
2
{\displaystyle 5{\sqrt {2}}}
15°
6
−
2
4
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
6
+
2
4
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
2
−
3
{\displaystyle 2-{\sqrt {3}}}
2
+
3
{\displaystyle 2+{\sqrt {3}}}
6
−
2
{\displaystyle {\sqrt {6}}-{\sqrt {2}}}
6
+
2
{\displaystyle {\sqrt {6}}+{\sqrt {2}}}
16°
7
25
{\displaystyle {\frac {7}{25}}}
24
25
{\displaystyle {\frac {24}{25}}}
7
24
{\displaystyle {\frac {7}{24}}}
24
7
{\displaystyle {\frac {24}{7}}}
25
24
{\displaystyle {\frac {25}{24}}}
25
7
{\displaystyle {\frac {25}{7}}}
18°
−
1
+
5
4
{\displaystyle {\frac {-1+{\sqrt {5}}}{4}}}
10
+
2
5
4
{\displaystyle {\frac {\sqrt {10+2{\sqrt {5}}}}{4}}}
(
−
5
+
3
5
)
10
+
2
5
20
{\displaystyle {\frac {(-5+3{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{20}}}
(
1
+
5
)
10
+
2
5
4
{\displaystyle {\frac {(1+{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{4}}}
(
5
−
5
)
10
+
2
5
10
{\displaystyle {\frac {(5-{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{10}}}
1
+
5
{\displaystyle 1+{\sqrt {5}}}
30°
1
2
{\displaystyle {\frac {1}{2}}}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
3
3
{\displaystyle {\frac {\sqrt {3}}{3}}}
3
{\displaystyle {\sqrt {3}}}
2
3
3
{\displaystyle {\frac {2{\sqrt {3}}}{3}}}
2
{\displaystyle 2}
36°
10
−
2
5
4
{\displaystyle {\frac {\sqrt {10-2{\sqrt {5}}}}{4}}}
1
+
5
4
{\displaystyle {\frac {1+{\sqrt {5}}}{4}}}
(
−
1
+
5
)
10
−
2
5
4
{\displaystyle {\frac {(-1+{\sqrt {5}}){\sqrt {10-2{\sqrt {5}}}}}{4}}}
(
5
+
3
5
)
10
−
2
5
20
{\displaystyle {\frac {(5+3{\sqrt {5}}){\sqrt {10-2{\sqrt {5}}}}}{20}}}
−
1
+
5
{\displaystyle -1+{\sqrt {5}}}
(
5
+
5
)
10
−
2
5
10
{\displaystyle {\frac {(5+{\sqrt {5}}){\sqrt {10-2{\sqrt {5}}}}}{10}}}
37°
3
5
{\displaystyle {\frac {3}{5}}}
4
5
{\displaystyle {\frac {4}{5}}}
3
4
{\displaystyle {\frac {3}{4}}}
4
3
{\displaystyle {\frac {4}{3}}}
5
4
{\displaystyle {\frac {5}{4}}}
5
3
{\displaystyle {\frac {5}{3}}}
45°
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
1
{\displaystyle 1}
1
{\displaystyle 1}
2
{\displaystyle {\sqrt {2}}}
2
{\displaystyle {\sqrt {2}}}
53°
4
5
{\displaystyle {\frac {4}{5}}}
3
5
{\displaystyle {\frac {3}{5}}}
4
3
{\displaystyle {\frac {4}{3}}}
3
4
{\displaystyle {\frac {3}{4}}}
5
3
{\displaystyle {\frac {5}{3}}}
5
4
{\displaystyle {\frac {5}{4}}}
54°
1
+
5
4
{\displaystyle {\frac {1+{\sqrt {5}}}{4}}}
10
−
2
5
4
{\displaystyle {\frac {\sqrt {10-2{\sqrt {5}}}}{4}}}
(
5
+
3
5
)
10
−
2
5
20
{\displaystyle {\frac {(5+3{\sqrt {5}}){\sqrt {10-2{\sqrt {5}}}}}{20}}}
(
−
1
+
5
)
10
−
2
5
4
{\displaystyle {\frac {(-1+{\sqrt {5}}){\sqrt {10-2{\sqrt {5}}}}}{4}}}
(
5
+
5
)
10
−
2
5
10
{\displaystyle {\frac {(5+{\sqrt {5}}){\sqrt {10-2{\sqrt {5}}}}}{10}}}
−
1
+
5
{\displaystyle -1+{\sqrt {5}}}
60°
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
1
2
{\displaystyle {\frac {1}{2}}}
3
{\displaystyle {\sqrt {3}}}
3
3
{\displaystyle {\frac {\sqrt {3}}{3}}}
2
{\displaystyle 2}
2
3
3
{\displaystyle {\frac {2{\sqrt {3}}}{3}}}
72°
10
+
2
5
4
{\displaystyle {\frac {\sqrt {10+2{\sqrt {5}}}}{4}}}
−
1
+
5
4
{\displaystyle {\frac {-1+{\sqrt {5}}}{4}}}
(
1
+
5
)
10
+
2
5
4
{\displaystyle {\frac {(1+{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{4}}}
(
−
5
+
3
5
)
10
+
2
5
20
{\displaystyle {\frac {(-5+3{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{20}}}
1
+
5
{\displaystyle 1+{\sqrt {5}}}
(
5
−
5
)
10
+
2
5
10
{\displaystyle {\frac {(5-{\sqrt {5}}){\sqrt {10+2{\sqrt {5}}}}}{10}}}
74°
24
25
{\displaystyle {\frac {24}{25}}}
7
25
{\displaystyle {\frac {7}{25}}}
24
7
{\displaystyle {\frac {24}{7}}}
7
24
{\displaystyle {\frac {7}{24}}}
25
7
{\displaystyle {\frac {25}{7}}}
25
24
{\displaystyle {\frac {25}{24}}}
75°
6
+
2
4
{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}
6
−
2
4
{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}
2
+
3
{\displaystyle 2+{\sqrt {3}}}
2
−
3
{\displaystyle 2-{\sqrt {3}}}
6
+
2
{\displaystyle {\sqrt {6}}+{\sqrt {2}}}
6
−
2
{\displaystyle {\sqrt {6}}-{\sqrt {2}}}
82°
7
2
10
{\displaystyle {\frac {7{\sqrt {2}}}{10}}}
2
10
{\displaystyle {\frac {\sqrt {2}}{10}}}
7
{\displaystyle 7}
1
7
{\displaystyle {\frac {1}{7}}}
5
2
{\displaystyle 5{\sqrt {2}}}
5
2
7
{\displaystyle {\frac {5{\sqrt {2}}}{7}}}
90°
1
{\displaystyle 1}
0
{\displaystyle 0}
∞
{\displaystyle \infty }
0
{\displaystyle 0}
∞
{\displaystyle \infty }
1
{\displaystyle 1}
Fungsi invers trigonometri merupakan fungsi yang merupakan kebalikan dari fungsi dasar trigonometri. Lazimnya, fungsi invers trigonometri biasanya dinotasikan dengan prefiks arc -.[ 1] Terkadang, fungsi invers trigonometri juga dituliskan melalui notasi eksponen
−
1
{\displaystyle ^{-1}}
.[ nb 1]
Berikut adalah fungsi invers trigonometri, dengan ranah dan kisarannya, antara lain:
Nama fungsi
Simbol
Ranah
Citra/Kisaran
Fungsi invers
Ranah
Citra
sinus
sin
{\displaystyle \sin }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
[
−
1
,
1
]
{\displaystyle [-1,1]}
arcsin
{\displaystyle \arcsin }
:
{\displaystyle :}
[
−
1
,
1
]
{\displaystyle [-1,1]}
→
{\displaystyle \to }
[
−
π
2
,
π
2
]
{\displaystyle \left[-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right]}
kosinus
cos
{\displaystyle \cos }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
[
−
1
,
1
]
{\displaystyle [-1,1]}
arccos
{\displaystyle \arccos }
:
{\displaystyle :}
[
−
1
,
1
]
{\displaystyle [-1,1]}
→
{\displaystyle \to }
[
0
,
π
]
{\displaystyle [0,\pi ]}
tangen
tan
{\displaystyle \tan }
:
{\displaystyle :}
π
Z
+
(
−
π
2
,
π
2
)
{\displaystyle \pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
→
{\displaystyle \to }
R
{\displaystyle \mathbb {R} }
arctan
{\displaystyle \arctan }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
(
−
π
2
,
π
2
)
{\displaystyle \left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
kotangen
cot
{\displaystyle \cot }
:
{\displaystyle :}
π
Z
+
(
0
,
π
)
{\displaystyle \pi \mathbb {Z} +(0,\pi )}
→
{\displaystyle \to }
R
{\displaystyle \mathbb {R} }
arccot
{\displaystyle \operatorname {arccot} }
:
{\displaystyle :}
R
{\displaystyle \mathbb {R} }
→
{\displaystyle \to }
(
0
,
π
)
{\displaystyle (0,\pi )}
sekan
sec
{\displaystyle \sec }
:
{\displaystyle :}
π
Z
+
(
−
π
2
,
π
2
)
{\displaystyle \pi \mathbb {Z} +\left(-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right)}
→
{\displaystyle \to }
R
∖
(
−
1
,
1
)
=
(
−
∞
,
−
1
]
∪
[
1
,
∞
)
{\displaystyle \mathbb {R} \setminus (-1,1)=(-\infty ,-1]\cup [1,\infty )}
arcsec
{\displaystyle \operatorname {arcsec} }
:
{\displaystyle :}
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
→
{\displaystyle \to }
[
0
,
π
]
∖
{
π
2
}
{\displaystyle [\,0,\;\pi \,]\;\;\;\setminus \left\{{\tfrac {\pi }{2}}\right\}}
kosekan
csc
{\displaystyle \csc }
:
{\displaystyle :}
π
Z
+
(
0
,
π
)
{\displaystyle \pi \mathbb {Z} +(0,\pi )}
→
{\displaystyle \to }
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
arccsc
{\displaystyle \operatorname {arccsc} }
:
{\displaystyle :}
R
∖
(
−
1
,
1
)
{\displaystyle \mathbb {R} \setminus (-1,1)}
→
{\displaystyle \to }
[
−
π
2
,
π
2
]
∖
{
0
}
{\displaystyle \left[-{\tfrac {\pi }{2}},{\tfrac {\pi }{2}}\right]\setminus \{0\}}
Komposisi fungsi trigonometri dengan invers fungsinya sendiri akan sama dengan menuliskan suatu variabel. Dengan kata lain (tinjau
f
{\displaystyle f}
adalah fungsi),
f
(
f
−
1
(
x
)
)
=
x
{\displaystyle f(f^{-1}(x))=x}
jika dan hanya jika
f
−
1
(
f
(
x
)
)
=
x
{\displaystyle f^{-1}(f(x))=x}
Hal yang serupa untuk fungsi trigonometri, berikut adalah fungsi yang memetakan fungsi inversnya sendiri:
sin
(
arcsin
(
x
)
)
=
x
{\displaystyle \sin(\arcsin(x))=x}
cos
(
arccos
(
x
)
)
=
x
{\displaystyle \cos(\arccos(x))=x}
tan
(
arctan
(
x
)
)
=
x
{\displaystyle \tan(\arctan(x))=x}
sec
(
arcsec
(
x
)
)
=
x
{\displaystyle \sec(\operatorname {arcsec}(x))=x}
csc
(
arccsc
(
x
)
)
=
x
{\displaystyle \csc(\operatorname {arccsc}(x))=x}
cot
(
arccot
(
x
)
)
=
x
{\displaystyle \cot(\operatorname {arccot}(x))=x}
Komposisi fungsi invers untuk lebih lanjut dapat dilihat pada tabel di bawah ini.[ 2]
sin
(
arcsin
x
)
=
x
cos
(
arcsin
x
)
=
1
−
x
2
tan
(
arcsin
x
)
=
x
1
−
x
2
sin
(
arccos
x
)
=
1
−
x
2
cos
(
arccos
x
)
=
x
tan
(
arccos
x
)
=
1
−
x
2
x
sin
(
arctan
x
)
=
x
1
+
x
2
cos
(
arctan
x
)
=
1
1
+
x
2
tan
(
arctan
x
)
=
x
sin
(
arccsc
x
)
=
1
x
cos
(
arccsc
x
)
=
x
2
−
1
x
tan
(
arccsc
x
)
=
1
x
2
−
1
sin
(
arcsec
x
)
=
x
2
−
1
x
cos
(
arcsec
x
)
=
1
x
tan
(
arcsec
x
)
=
x
2
−
1
sin
(
arccot
x
)
=
1
1
+
x
2
cos
(
arccot
x
)
=
x
1
+
x
2
tan
(
arccot
x
)
=
1
x
{\displaystyle {\begin{aligned}\sin(\arcsin x)&=x&\cos(\arcsin x)&={\sqrt {1-x^{2}}}&\tan(\arcsin x)&={\frac {x}{\sqrt {1-x^{2}}}}\\\sin(\arccos x)&={\sqrt {1-x^{2}}}&\cos(\arccos x)&=x&\tan(\arccos x)&={\frac {\sqrt {1-x^{2}}}{x}}\\\sin(\arctan x)&={\frac {x}{\sqrt {1+x^{2}}}}&\cos(\arctan x)&={\frac {1}{\sqrt {1+x^{2}}}}&\tan(\arctan x)&=x\\\sin(\operatorname {arccsc} x)&={\frac {1}{x}}&\cos(\operatorname {arccsc} x)&={\frac {\sqrt {x^{2}-1}}{x}}&\tan(\operatorname {arccsc} x)&={\frac {1}{\sqrt {x^{2}-1}}}\\\sin(\operatorname {arcsec} x)&={\frac {\sqrt {x^{2}-1}}{x}}&\cos(\operatorname {arcsec} x)&={\frac {1}{x}}&\tan(\operatorname {arcsec} x)&={\sqrt {x^{2}-1}}\\\sin(\operatorname {arccot} x)&={\frac {1}{\sqrt {1+x^{2}}}}&\cos(\operatorname {arccot} x)&={\frac {x}{\sqrt {1+x^{2}}}}&\tan(\operatorname {arccot} x)&={\frac {1}{x}}\\\end{aligned}}}
Berikut adalah penyelesaian persamaan trigonometri, dengan nilai
θ
{\displaystyle \theta }
dan
x
{\displaystyle x}
.
Persamaan
⟺
{\displaystyle \iff }
Penyelesaian
untuk suatu
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
sin
θ
=
x
{\displaystyle \sin \theta =x}
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
{\displaystyle (-1)^{k}}
arcsin
(
x
)
{\displaystyle \arcsin(x)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
cos
θ
=
x
{\displaystyle \cos \theta =x}
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm \,}
arccos
(
x
)
{\displaystyle \arccos(x)}
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
tan
θ
=
x
{\displaystyle \tan \theta =x}
θ
=
{\displaystyle \theta =\,}
arctan
(
x
)
{\displaystyle \arctan(x)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
csc
θ
=
x
{\displaystyle \csc \theta =x}
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
{\displaystyle (-1)^{k}}
arccsc
(
x
)
{\displaystyle \operatorname {arccsc}(x)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
sec
θ
=
x
{\displaystyle \sec \theta =x}
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm \,}
arcsec
(
x
)
{\displaystyle \operatorname {arcsec}(x)}
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
cot
θ
=
x
{\displaystyle \cot \theta =x}
θ
=
{\displaystyle \theta =\,}
arccot
(
x
)
{\displaystyle \operatorname {arccot}(x)}
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
Berikut untuk persamaan dengan kedua ruas berupa fungsi trigonometri, tinjau sudut
θ
{\displaystyle \theta }
dan
φ
{\displaystyle \varphi }
.
Persamaan
⟺
{\displaystyle \iff }
Penyelesaian
untuk suatu
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
Juga berlaku untuk persamaan
sin
θ
=
sin
φ
{\displaystyle \sin \theta =\sin \varphi }
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
{\displaystyle (-1)^{k}}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
csc
θ
=
csc
φ
{\displaystyle \csc \theta =\csc \varphi }
cos
θ
=
cos
φ
{\displaystyle \cos \theta =\cos \varphi }
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm \,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
{\displaystyle \pi k}
sec
θ
=
sec
φ
{\displaystyle \sec \theta =\sec \varphi }
tan
θ
=
tan
φ
{\displaystyle \tan \theta =\tan \varphi }
θ
=
{\displaystyle \theta =\,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
cot
θ
=
cot
φ
{\displaystyle \cot \theta =\cot \varphi }
−
sin
θ
=
sin
φ
{\displaystyle -\sin \theta =\sin \varphi }
θ
=
{\displaystyle \theta =\,}
(
−
1
)
k
+
1
{\displaystyle (-1)^{k+1}}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
−
csc
θ
=
csc
φ
{\displaystyle -\csc \theta =\csc \varphi }
−
cos
θ
=
cos
φ
{\displaystyle -\cos \theta =\cos \varphi }
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm \,}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
2
{\displaystyle 2}
π
k
+
π
{\displaystyle \pi k+\pi }
−
sec
θ
=
sec
φ
{\displaystyle -\sec \theta =\sec \varphi }
−
tan
θ
=
tan
φ
{\displaystyle -\tan \theta =\tan \varphi }
θ
=
{\displaystyle \theta =\,}
−
{\displaystyle -}
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
−
cot
θ
=
cot
φ
{\displaystyle -\cot \theta =\cot \varphi }
|
sin
θ
|
=
|
sin
φ
|
{\displaystyle \left|\sin \theta \right|=\left|\sin \varphi \right|}
θ
=
{\displaystyle \theta =\,}
±
{\displaystyle \pm }
φ
{\displaystyle \varphi }
+
{\displaystyle +}
π
k
{\displaystyle \pi k}
|
cos
θ
|
=
|
cos
φ
|
|
tan
θ
|
=
|
tan
φ
|
|
csc
θ
|
=
|
csc
φ
|
|
sec
θ
|
=
|
csc
φ
|
|
cot
θ
|
=
|
csc
φ
|
{\displaystyle {\begin{aligned}\left|\cos \theta \right|&=\left|\cos \varphi \right|\\\left|\tan \theta \right|&=\left|\tan \varphi \right|\\\left|\csc \theta \right|&=\left|\csc \varphi \right|\\\left|\sec \theta \right|&=\left|\csc \varphi \right|\\\left|\cot \theta \right|&=\left|\csc \varphi \right|\end{aligned}}}
Beberapa fungsi trigonometri lainnya.
Beberapa fungsi trigonometri antara lain: fungsi yang jarang digunakan seperti versin , coversin , vercosin , covercosin , haversin , havercosin , hacoversin , hacovercosin , exsec , dan excsc . Tabel di bawah menunjukkan fungsi trigonometri yang jarang digunakan beserta dengan grafiknya, antara lain sebagai berikut.
versin
(
θ
)
:=
2
sin
2
(
θ
2
)
=
1
−
cos
(
θ
)
{\displaystyle {\textrm {versin}}(\theta ):=2\sin ^{2}\!\left({\frac {\theta }{2}}\right)=1-\cos(\theta )\,}
[ 3]
coversin
(
θ
)
:=
versin
(
π
2
−
θ
)
=
1
−
sin
(
θ
)
{\displaystyle {\textrm {coversin}}(\theta ):={\textrm {versin}}\!\left({\frac {\pi }{2}}-\theta \right)=1-\sin(\theta )\,}
[ 3]
vercosin
(
θ
)
:=
2
cos
2
(
θ
2
)
=
1
+
cos
(
θ
)
{\displaystyle {\textrm {vercosin}}(\theta ):=2\cos ^{2}\!\left({\frac {\theta }{2}}\right)=1+\cos(\theta )\,}
[ 3]
covercosin
(
θ
)
:=
vercosin
(
π
2
−
θ
)
=
1
+
sin
(
θ
)
{\displaystyle {\textrm {covercosin}}(\theta ):={\textrm {vercosin}}\!\left({\frac {\pi }{2}}-\theta \right)=1+\sin(\theta )\,}
[ 4]
haversin
(
θ
)
:=
versin
(
θ
)
2
=
sin
2
(
θ
2
)
=
1
−
cos
(
θ
)
2
{\displaystyle {\textrm {haversin}}(\theta ):={\frac {{\textrm {versin}}(\theta )}{2}}=\sin ^{2}\!\left({\frac {\theta }{2}}\right)={\frac {1-\cos(\theta )}{2}}\,}
[ 5]
hacoversin
(
θ
)
:=
coversin
(
θ
)
2
=
1
−
sin
(
θ
)
2
{\displaystyle {\textrm {hacoversin}}(\theta ):={\frac {{\textrm {coversin}}(\theta )}{2}}={\frac {1-\sin(\theta )}{2}}\,}
[ 6]
havercosin
(
θ
)
:=
vercosin
(
θ
)
2
=
cos
2
(
θ
2
)
=
1
+
cos
(
θ
)
2
{\displaystyle {\textrm {havercosin}}(\theta ):={\frac {{\textrm {vercosin}}(\theta )}{2}}=\cos ^{2}\!\left({\frac {\theta }{2}}\right)={\frac {1+\cos(\theta )}{2}}\,}
[ 7]
hacovercosin
(
θ
)
:=
covercosin
(
θ
)
2
=
1
+
sin
(
θ
)
2
{\displaystyle {\textrm {hacovercosin}}(\theta ):={\frac {{\textrm {covercosin}}(\theta )}{2}}={\frac {1+\sin(\theta )}{2}}\,}
[ 8]
Selain fungsi yang jarang digunakan, terdapat fungsi trigonometri lainnya. Berikut di antaranya: tali busur disingkat crd , dan gd mengindikasikan fungsi Gudermann . Masing-masing dirumuskan sebagai berikut.
crd
θ
=
(
1
−
cos
θ
)
2
+
sin
2
θ
=
2
−
2
cos
θ
=
2
sin
(
θ
2
)
{\displaystyle \operatorname {crd} \ \theta ={\sqrt {(1-\cos \theta )^{2}+\sin ^{2}\theta }}={\sqrt {2-2\cos \theta }}=2\sin \left({\frac {\theta }{2}}\right)}
.
gd
x
=
∫
0
x
sech
t
d
t
{\displaystyle \operatorname {gd} x=\int _{0}^{x}\operatorname {sech} t\,\mathrm {d} t}
.[ 9]
Identitas Pythagoras adalah identitas trigonometri yang diturunkan dari teorema Pythagoras .[ 10] Dengan kata lain, identitas Pythagoras merupakan konsep teorema Pythagoras melalui fungsi trigonometri. Berikut adalah identitas Pythagoras beserta buktinya, antara lain:
sin
2
A
+
cos
2
A
=
1
{\displaystyle \sin ^{2}A+\cos ^{2}A=1}
1
+
tan
2
A
=
sec
2
A
{\displaystyle 1+\tan ^{2}A=\sec ^{2}A}
Klik "tampil" 'tuk melihat bukti
1
+
tan
2
A
=
cos
2
A
cos
2
A
+
sin
2
A
cos
2
A
=
1
cos
2
A
=
sec
2
A
{\displaystyle 1+\tan ^{2}A={\frac {\cos ^{2}A}{\cos ^{2}A}}+{\frac {\sin ^{2}A}{\cos ^{2}A}}={\frac {1}{\cos ^{2}A}}=\sec ^{2}A}
.
◼
{\displaystyle \blacksquare }
1
+
cot
2
A
=
csc
2
A
{\displaystyle 1+\cot ^{2}A=\csc ^{2}A}
Klik "tampil" 'tuk melihat bukti
1
+
cot
2
A
=
sin
2
A
sin
2
A
+
cos
2
A
sin
2
A
=
1
sin
2
A
=
csc
2
A
{\displaystyle 1+\cot ^{2}A={\frac {\sin ^{2}A}{\sin ^{2}A}}+{\frac {\cos ^{2}A}{\sin ^{2}A}}={\frac {1}{\sin ^{2}A}}=\csc ^{2}A}
.
◼
{\displaystyle \blacksquare }
Dengan menggunakan ketiga identitas di atas, kita dapat menentukan identitas trigonometri lainnya. Tabel berikut menunjukkannya.[ 11]
sin
θ
{\displaystyle \sin \theta }
cos
θ
{\displaystyle \cos \theta }
tan
θ
{\displaystyle \tan \theta }
csc
θ
{\displaystyle \csc \theta }
sec
θ
{\displaystyle \sec \theta }
cot
θ
{\displaystyle \cot \theta }
sin
θ
{\displaystyle \sin \theta }
sin
θ
{\displaystyle \sin \theta }
±
1
−
cos
2
θ
{\displaystyle \pm {\sqrt {1-\cos ^{2}\theta }}}
±
tan
θ
1
+
tan
2
θ
{\displaystyle \pm {\frac {\tan \theta }{\sqrt {1+\tan ^{2}\theta }}}}
1
csc
θ
{\displaystyle {\frac {1}{\csc \theta }}}
±
sec
2
θ
−
1
sec
θ
{\displaystyle \pm {\frac {\sqrt {\sec ^{2}\theta -1}}{\sec \theta }}}
±
1
1
+
cot
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1+\cot ^{2}\theta }}}}
cos
θ
{\displaystyle \cos \theta }
±
1
−
sin
2
θ
{\displaystyle \pm {\sqrt {1-\sin ^{2}\theta }}}
cos
θ
{\displaystyle \cos \theta }
±
1
1
+
tan
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1+\tan ^{2}\theta }}}}
±
csc
2
θ
−
1
csc
θ
{\displaystyle \pm {\frac {\sqrt {\csc ^{2}\theta -1}}{\csc \theta }}}
1
sec
θ
{\displaystyle {\frac {1}{\sec \theta }}}
±
cot
θ
1
+
cot
2
θ
{\displaystyle \pm {\frac {\cot \theta }{\sqrt {1+\cot ^{2}\theta }}}}
tan
θ
{\displaystyle \tan \theta }
±
sin
θ
1
−
sin
2
θ
{\displaystyle \pm {\frac {\sin \theta }{\sqrt {1-\sin ^{2}\theta }}}}
±
1
−
cos
2
θ
cos
θ
{\displaystyle \pm {\frac {\sqrt {1-\cos ^{2}\theta }}{\cos \theta }}}
tan
θ
{\displaystyle \tan \theta }
±
1
csc
2
θ
−
1
{\displaystyle \pm {\frac {1}{\sqrt {\csc ^{2}\theta -1}}}}
±
sec
2
θ
−
1
{\displaystyle \pm {\sqrt {\sec ^{2}\theta -1}}}
1
cot
θ
{\displaystyle {\frac {1}{\cot \theta }}}
csc
θ
{\displaystyle \csc \theta }
1
sin
θ
{\displaystyle {\frac {1}{\sin \theta }}}
±
1
1
−
cos
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1-\cos ^{2}\theta }}}}
±
1
+
tan
2
θ
tan
θ
{\displaystyle \pm {\frac {\sqrt {1+\tan ^{2}\theta }}{\tan \theta }}}
csc
θ
{\displaystyle \csc \theta }
±
sec
θ
sec
2
θ
−
1
{\displaystyle \pm {\frac {\sec \theta }{\sqrt {\sec ^{2}\theta -1}}}}
±
1
+
cot
2
θ
{\displaystyle \pm {\sqrt {1+\cot ^{2}\theta }}}
sec
θ
{\displaystyle \sec \theta }
±
1
1
−
sin
2
θ
{\displaystyle \pm {\frac {1}{\sqrt {1-\sin ^{2}\theta }}}}
1
cos
θ
{\displaystyle {\frac {1}{\cos \theta }}}
±
1
+
tan
2
θ
{\displaystyle \pm {\sqrt {1+\tan ^{2}\theta }}}
±
csc
θ
csc
2
θ
−
1
{\displaystyle \pm {\frac {\csc \theta }{\sqrt {\csc ^{2}\theta -1}}}}
sec
θ
{\displaystyle \sec \theta }
±
1
+
cot
2
θ
cot
θ
{\displaystyle \pm {\frac {\sqrt {1+\cot ^{2}\theta }}{\cot \theta }}}
cot
θ
{\displaystyle \cot \theta }
±
1
−
sin
2
θ
sin
θ
{\displaystyle \pm {\frac {\sqrt {1-\sin ^{2}\theta }}{\sin \theta }}}
±
cos
θ
1
−
cos
2
θ
{\displaystyle \pm {\frac {\cos \theta }{\sqrt {1-\cos ^{2}\theta }}}}
1
tan
θ
{\displaystyle {\frac {1}{\tan \theta }}}
±
csc
2
θ
−
1
{\displaystyle \pm {\sqrt {\csc ^{2}\theta -1}}}
±
1
sec
2
θ
−
1
{\displaystyle \pm {\frac {1}{\sqrt {\sec ^{2}\theta -1}}}}
cot
θ
{\displaystyle \cot \theta }
Transformasi koordinat
(
a
,
b
)
{\displaystyle (a,b)}
ketika putaran sudut refleksi
α
{\displaystyle \alpha }
bertambah
π
4
{\displaystyle {\frac {\pi }{4}}}
radian.
Kita dapat menentukan pencerminan dan putaran sudut bila kita meneliti satuan lingkaran . Berikut adalah tabel-tabel mengenai pencerminan dan putaran sudut.
Berikut adalah tabel-tabel mengenai pencerminan sudut. Misal
α
{\displaystyle \alpha }
adalah suatu sudut sembarang yang mencerminkan atau merefleksikan sudut
θ
{\displaystyle \theta }
. Tabel berikut hanya menjelaskan refleksi
θ
{\displaystyle \theta }
terhadap
α
{\displaystyle \alpha }
yang bernilaikan satuan radian,
0
{\displaystyle 0}
,
π
4
{\textstyle {\frac {\pi }{4}}}
,
π
2
{\textstyle {\frac {\pi }{2}}}
,
3
π
4
{\textstyle {\frac {3\pi }{4}}}
, dan
π
{\displaystyle \pi }
. Sudut dengan nilai radian
π
{\displaystyle \pi }
dapat kita bandingkan dengan sudut
0
{\displaystyle 0}
Dalam tabel yang bersubjudulkan
α
=
0
{\displaystyle \alpha =0}
merupakan identitas fungsi ganjil dan genap terhadap fungsi trigonometri.
θ
{\displaystyle \theta }
refleksi terhadap
α
=
0
{\displaystyle \alpha =0}
[ 12]
θ
{\displaystyle \theta }
refleksi terhadap
α
=
π
4
{\displaystyle \alpha ={\frac {\pi }{4}}}
θ
{\displaystyle \theta }
refleksi terhadap
α
=
π
2
{\displaystyle \alpha ={\frac {\pi }{2}}}
θ
{\displaystyle \theta }
refleksi terhadap
α
=
3
π
4
{\displaystyle \alpha ={\frac {3\pi }{4}}}
θ
{\displaystyle \theta }
refleksi terhadap
α
=
π
{\displaystyle \alpha =\pi }
(Bandingkan dengan
α
=
0
{\displaystyle \alpha =0}
)
sin
(
−
θ
)
=
−
sin
θ
{\displaystyle \sin(-\theta )=-\sin \theta }
sin
(
π
2
−
θ
)
=
cos
θ
{\displaystyle \sin \left({\tfrac {\pi }{2}}-\theta \right)=\cos \theta }
sin
(
π
−
θ
)
=
+
sin
θ
{\displaystyle \sin(\pi -\theta )=+\sin \theta }
sin
(
3
π
2
−
θ
)
=
−
cos
θ
{\displaystyle \sin \left({\tfrac {3\pi }{2}}-\theta \right)=-\cos \theta }
sin
(
2
π
−
θ
)
=
−
sin
(
θ
)
=
sin
(
−
θ
)
{\displaystyle \sin(2\pi -\theta )=-\sin(\theta )=\sin(-\theta )}
cos
(
−
θ
)
=
+
cos
θ
{\displaystyle \cos(-\theta )=+\cos \theta }
cos
(
π
2
−
θ
)
=
sin
θ
{\displaystyle \cos \left({\tfrac {\pi }{2}}-\theta \right)=\sin \theta }
cos
(
π
−
θ
)
=
−
cos
θ
{\displaystyle \cos(\pi -\theta )=-\cos \theta }
cos
(
3
π
2
−
θ
)
=
−
sin
θ
{\displaystyle \cos \left({\tfrac {3\pi }{2}}-\theta \right)=-\sin \theta }
cos
(
2
π
−
θ
)
=
+
cos
(
θ
)
=
cos
(
−
θ
)
{\displaystyle \cos(2\pi -\theta )=+\cos(\theta )=\cos(-\theta )}
tan
(
−
θ
)
=
−
tan
θ
{\displaystyle \tan(-\theta )=-\tan \theta }
tan
(
π
2
−
θ
)
=
cot
θ
{\displaystyle \tan \left({\tfrac {\pi }{2}}-\theta \right)=\cot \theta }
tan
(
π
−
θ
)
=
−
tan
θ
{\displaystyle \tan(\pi -\theta )=-\tan \theta }
tan
(
3
π
2
−
θ
)
=
+
cot
θ
{\displaystyle \tan \left({\tfrac {3\pi }{2}}-\theta \right)=+\cot \theta }
tan
(
2
π
−
θ
)
=
−
tan
(
θ
)
=
tan
(
−
θ
)
{\displaystyle \tan(2\pi -\theta )=-\tan(\theta )=\tan(-\theta )}
csc
(
−
θ
)
=
−
csc
θ
{\displaystyle \csc(-\theta )=-\csc \theta }
csc
(
π
2
−
θ
)
=
sec
θ
{\displaystyle \csc \left({\tfrac {\pi }{2}}-\theta \right)=\sec \theta }
csc
(
π
−
θ
)
=
+
csc
θ
{\displaystyle \csc(\pi -\theta )=+\csc \theta }
csc
(
3
π
2
−
θ
)
=
−
sec
θ
{\displaystyle \csc \left({\tfrac {3\pi }{2}}-\theta \right)=-\sec \theta }
csc
(
2
π
−
θ
)
=
−
csc
(
θ
)
=
csc
(
−
θ
)
{\displaystyle \csc(2\pi -\theta )=-\csc(\theta )=\csc(-\theta )}
sec
(
−
θ
)
=
+
sec
θ
{\displaystyle \sec(-\theta )=+\sec \theta }
sec
(
π
2
−
θ
)
=
csc
θ
{\displaystyle \sec \left({\tfrac {\pi }{2}}-\theta \right)=\csc \theta }
sec
(
π
−
θ
)
=
−
sec
θ
{\displaystyle \sec(\pi -\theta )=-\sec \theta }
sec
(
3
π
2
−
θ
)
=
−
csc
θ
{\displaystyle \sec \left({\tfrac {3\pi }{2}}-\theta \right)=-\csc \theta }
sec
(
2
π
−
θ
)
=
+
sec
(
θ
)
=
sec
(
−
θ
)
{\displaystyle \sec(2\pi -\theta )=+\sec(\theta )=\sec(-\theta )}
cot
(
−
θ
)
=
−
cot
θ
{\displaystyle \cot(-\theta )=-\cot \theta }
cot
(
π
2
−
θ
)
=
tan
θ
{\displaystyle \cot \left({\tfrac {\pi }{2}}-\theta \right)=\tan \theta }
cot
(
π
−
θ
)
=
−
cot
θ
{\displaystyle \cot(\pi -\theta )=-\cot \theta }
cot
(
3
π
2
−
θ
)
=
+
tan
θ
{\displaystyle \cot \left({\tfrac {3\pi }{2}}-\theta \right)=+\tan \theta }
cot
(
2
π
−
θ
)
=
−
cot
(
θ
)
=
cot
(
−
θ
)
{\displaystyle \cot(2\pi -\theta )=-\cot(\theta )=\cot(-\theta )}
Transformasi koordinat
(
a
,
b
)
{\displaystyle (a,b)}
ketika putaran sudut
θ
{\displaystyle \theta }
bertambah
π
2
{\displaystyle {\frac {\pi }{2}}}
radian.
Putaran seperempat radian
Putaran setengan radian
Putaran satu radian[ 13]
Periode
sin
(
θ
±
π
2
)
=
±
cos
θ
{\displaystyle \sin(\theta \pm {\tfrac {\pi }{2}})=\pm \cos \theta }
sin
(
θ
+
π
)
=
−
sin
θ
{\displaystyle \sin(\theta +\pi )=-\sin \theta }
sin
(
θ
+
k
⋅
2
π
)
=
+
sin
θ
{\displaystyle \sin(\theta +k\cdot 2\pi )=+\sin \theta }
2
π
{\displaystyle 2\pi }
cos
(
θ
±
π
2
)
=
∓
sin
θ
{\displaystyle \cos(\theta \pm {\tfrac {\pi }{2}})=\mp \sin \theta }
cos
(
θ
+
π
)
=
−
cos
θ
{\displaystyle \cos(\theta +\pi )=-\cos \theta }
cos
(
θ
+
k
⋅
2
π
)
=
+
cos
θ
{\displaystyle \cos(\theta +k\cdot 2\pi )=+\cos \theta }
2
π
{\displaystyle 2\pi }
csc
(
θ
±
π
2
)
=
±
sec
θ
{\displaystyle \csc(\theta \pm {\tfrac {\pi }{2}})=\pm \sec \theta }
csc
(
θ
+
π
)
=
−
csc
θ
{\displaystyle \csc(\theta +\pi )=-\csc \theta }
csc
(
θ
+
k
⋅
2
π
)
=
+
csc
θ
{\displaystyle \csc(\theta +k\cdot 2\pi )=+\csc \theta }
2
π
{\displaystyle 2\pi }
sec
(
θ
±
π
2
)
=
∓
csc
θ
{\displaystyle \sec(\theta \pm {\tfrac {\pi }{2}})=\mp \csc \theta }
sec
(
θ
+
π
)
=
−
sec
θ
{\displaystyle \sec(\theta +\pi )=-\sec \theta }
sec
(
θ
+
k
⋅
2
π
)
=
+
sec
θ
{\displaystyle \sec(\theta +k\cdot 2\pi )=+\sec \theta }
2
π
{\displaystyle 2\pi }
tan
(
θ
±
π
4
)
=
tan
θ
±
1
1
∓
tan
θ
{\displaystyle \tan(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\tan \theta \pm 1}{1\mp \tan \theta }}}
tan
(
θ
+
π
2
)
=
−
cot
θ
{\displaystyle \tan(\theta +{\tfrac {\pi }{2}})=-\cot \theta }
tan
(
θ
+
k
⋅
π
)
=
+
tan
θ
{\displaystyle \tan(\theta +k\cdot \pi )=+\tan \theta }
π
{\displaystyle \pi }
cot
(
θ
±
π
4
)
=
cot
θ
∓
1
1
±
cot
θ
{\displaystyle \cot(\theta \pm {\tfrac {\pi }{4}})={\tfrac {\cot \theta \mp 1}{1\pm \cot \theta }}}
cot
(
θ
+
π
2
)
=
−
tan
θ
{\displaystyle \cot(\theta +{\tfrac {\pi }{2}})=-\tan \theta }
cot
(
θ
+
k
⋅
π
)
=
+
cot
θ
{\displaystyle \cot(\theta +k\cdot \pi )=+\cot \theta }
π
{\displaystyle \pi }
Untuk suatu fungsi trigonometri dasar beserta inversnya, dapat didefinisikan melalui eksponensiasi. Tabel berikut menunjukkannya.
Fungsi
Fungsi invers[ 14]
sin
θ
=
e
i
θ
−
e
−
i
θ
2
i
{\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}}
arcsin
θ
=
−
i
ln
(
i
θ
+
1
−
θ
2
)
{\displaystyle \arcsin \theta =-i\,\ln \left(i\theta +{\sqrt {1-\theta ^{2}}}\right)}
cos
θ
=
e
i
θ
+
e
−
i
θ
2
{\displaystyle \cos \theta ={\frac {e^{i\theta }+e^{-i\theta }}{2}}}
arccos
θ
=
−
i
ln
(
θ
+
θ
2
−
1
)
{\displaystyle \arccos \theta =-i\,\ln \left(\theta +\,{\sqrt {\theta ^{2}-1}}\right)}
tan
θ
=
−
i
e
i
θ
−
e
−
i
θ
e
i
θ
+
e
−
i
θ
{\displaystyle \tan \theta =-i\,{\frac {e^{i\theta }-e^{-i\theta }}{e^{i\theta }+e^{-i\theta }}}}
arctan
θ
=
i
2
ln
(
i
+
θ
i
−
θ
)
{\displaystyle \arctan \theta ={\frac {i}{2}}\ln \left({\frac {i+\theta }{i-\theta }}\right)}
csc
θ
=
2
i
e
i
θ
−
e
−
i
θ
{\displaystyle \csc \theta ={\frac {2i}{e^{i\theta }-e^{-i\theta }}}}
arccsc
θ
=
−
i
ln
(
i
θ
+
1
−
1
θ
2
)
{\displaystyle \operatorname {arccsc} \theta =-i\,\ln \left({\frac {i}{\theta }}+{\sqrt {1-{\frac {1}{\theta ^{2}}}}}\right)}
sec
θ
=
2
e
i
θ
+
e
−
i
θ
{\displaystyle \sec \theta ={\frac {2}{e^{i\theta }+e^{-i\theta }}}}
arcsec
θ
=
−
i
ln
(
1
θ
+
i
1
−
1
θ
2
)
{\displaystyle \operatorname {arcsec} \theta =-i\,\ln \left({\frac {1}{\theta }}+i{\sqrt {1-{\frac {1}{\theta ^{2}}}}}\right)}
cot
θ
=
i
e
i
θ
+
e
−
i
θ
e
i
θ
−
e
−
i
θ
{\displaystyle \cot \theta =i\,{\frac {e^{i\theta }+e^{-i\theta }}{e^{i\theta }-e^{-i\theta }}}}
arccot
θ
=
i
2
ln
(
θ
−
i
θ
+
i
)
{\displaystyle \operatorname {arccot} \theta ={\frac {i}{2}}\ln \left({\frac {\theta -i}{\theta +i}}\right)}
cis
θ
=
e
i
θ
{\displaystyle \operatorname {cis} \theta =e^{i\theta }}
arccis
θ
=
−
i
ln
θ
{\displaystyle \operatorname {arccis} \theta =-i\ln \theta }
Disini,
e
{\displaystyle e}
adalah konstanta dengan nilai
2.718281845
…
{\displaystyle 2.718281845\dots }
,
i
{\displaystyle i}
adalah bilangan imajiner , dan
cis
{\displaystyle \operatorname {cis} }
merupakan fungsi trigonometri kosinus ditambahkan oleh fungsi trigonometri sinus yang dikali oleh imajiner, yaitu
cis
θ
=
cos
θ
+
i
sin
θ
{\displaystyle \operatorname {cis} \theta =\cos \theta +i\sin \theta }
.[ 15] [ 16]
Pada tabel terakhir, baris awal dan kolom akhir, tepat di bawah kiri sel, rumus tersebut disebut juga sebagai rumus Euler .
Jumlah sudut dimana ketika suatu fungsi trigonometri dengan variabel merupakan jumlah sudut-sudut. Sebagai permisalan, diberikan
α
{\displaystyle \alpha }
dan
β
{\displaystyle \beta }
adalah sudut sembarang, kita rumuskan untuk suatu fungsi trigonometri. Berikut di antaranya,[ 17]
Sinus
sin
(
α
±
β
)
{\displaystyle \sin(\alpha \pm \beta )}
=
{\displaystyle =}
sin
α
cos
β
±
cos
α
sin
β
{\displaystyle \sin \alpha \cos \beta \pm \cos \alpha \sin \beta }
[ 18] [ 19]
Kosinus
cos
(
α
±
β
)
{\displaystyle \cos(\alpha \pm \beta )}
=
{\displaystyle =}
cos
α
cos
β
∓
sin
α
sin
β
{\displaystyle \cos \alpha \cos \beta \mp \sin \alpha \sin \beta }
[ 19] [ 20]
Tangen
tan
(
α
±
β
)
{\displaystyle \tan(\alpha \pm \beta )}
=
{\displaystyle =}
tan
α
±
tan
β
1
∓
tan
α
tan
β
{\displaystyle {\frac {\tan \alpha \pm \tan \beta }{1\mp \tan \alpha \tan \beta }}}
[ 19] [ 21]
Kosekan
csc
(
α
±
β
)
{\displaystyle \csc(\alpha \pm \beta )}
=
{\displaystyle =}
sec
α
sec
β
csc
α
csc
β
sec
α
csc
β
±
csc
α
sec
β
{\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\sec \alpha \csc \beta \pm \csc \alpha \sec \beta }}}
[ 22]
Sekan
sec
(
α
±
β
)
{\displaystyle \sec(\alpha \pm \beta )}
=
{\displaystyle =}
sec
α
sec
β
csc
α
csc
β
csc
α
csc
β
∓
sec
α
sec
β
{\displaystyle {\frac {\sec \alpha \sec \beta \csc \alpha \csc \beta }{\csc \alpha \csc \beta \mp \sec \alpha \sec \beta }}}
[ 22]
Kotangen
cot
(
α
±
β
)
{\displaystyle \cot(\alpha \pm \beta )}
=
{\displaystyle =}
cot
α
cot
β
∓
1
cot
β
±
cot
α
{\displaystyle {\frac {\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha }}}
[ 19] [ 23]
Invers sinus
arcsin
x
±
arcsin
y
{\displaystyle \arcsin x\pm \arcsin y}
=
{\displaystyle =}
arcsin
(
x
1
−
y
2
±
y
1
−
x
2
)
{\displaystyle \arcsin \left(x{\sqrt {1-y^{2}}}\pm y{\sqrt {1-x^{2}}}\right)}
[ 24]
Invers kosinus
arccos
x
±
arccos
y
{\displaystyle \arccos x\pm \arccos y}
=
{\displaystyle =}
arccos
(
x
y
∓
(
1
−
x
2
)
(
1
−
y
2
)
)
{\displaystyle \arccos \left(xy\mp {\sqrt {\left(1-x^{2}\right)\left(1-y^{2}\right)}}\right)}
[ 25]
Invers tangen
arctan
x
±
arctan
y
{\displaystyle \arctan x\pm \arctan y}
=
{\displaystyle =}
arctan
(
x
±
y
1
∓
x
y
)
{\displaystyle \arctan \left({\frac {x\pm y}{1\mp xy}}\right)}
[ 26]
Invers kotangen
arccot
x
±
arccot
y
{\displaystyle \operatorname {arccot} x\pm \operatorname {arccot} y}
=
{\displaystyle =}
arccot
(
x
y
∓
1
y
±
x
)
{\displaystyle \operatorname {arccot} \left({\frac {xy\mp 1}{y\pm x}}\right)}
Jumlah dan selisih sudut sekan juga dirumuskan sebagai
sec
(
α
±
β
)
=
sec
α
sec
β
1
∓
tan
α
tan
β
{\displaystyle \sec(\alpha \pm \beta )={\frac {\sec \alpha \sec \beta }{1\mp \tan \alpha \tan \beta }}}
.
Sudut rangkap merupakan sudut yang dimana suatu variabel yang sama ditambahkan oleh variabel tersendiri. Sudut rangkap dapat dibuktikan melalui sifat jumlah sudut. Sebagai contoh, ketika kita ingin mencari
sin
2
x
{\displaystyle \sin 2x}
, maka kita gunakan rumus jumlah sudut untuk memperoleh rumus sudut sinus dua rangkap ini.
sin
2
θ
=
sin
(
θ
+
θ
)
=
sin
θ
cos
θ
+
sin
θ
cos
θ
=
2
sin
θ
cos
θ
{\displaystyle {\begin{aligned}\sin 2\theta &=\sin({\color {red}{\theta }}+{\color {green}{\theta }})\\&=\sin {\color {red}{\theta }}\cos {\color {green}{\theta }}+\sin {\color {green}{\theta }}\cos {\color {red}{\theta }}\\&=2\sin \theta \cos \theta \end{aligned}}}
Rumus jumlah sudut tersebut juga kita pakai untuk mencari sudut rangkap tiga. Andaikan kita diminta untuk mencari
sin
3
x
{\displaystyle \sin 3x}
, maka dengan menggunakan rumus jumlah sudut.
sin
3
θ
=
sin
(
2
θ
+
θ
)
=
sin
2
θ
cos
θ
+
sin
θ
cos
2
θ
=
2
sin
θ
cos
2
θ
+
sin
θ
(
1
−
2
sin
2
θ
)
=
2
sin
θ
(
1
−
sin
2
θ
)
+
sin
θ
−
2
sin
3
θ
=
2
sin
θ
−
2
sin
3
θ
+
sin
θ
−
2
sin
3
θ
=
3
sin
θ
−
4
sin
3
θ
{\displaystyle {\begin{aligned}\sin 3\theta &=\sin(2\theta +\theta )\\&=\sin 2\theta \cos \theta +\sin \theta \cos 2\theta \\&=2\sin \theta \cos ^{2}\theta +\sin \theta (1-2\sin ^{2}\theta )\\&=2\sin \theta (1-\sin ^{2}\theta )+\sin \theta -2\sin ^{3}\theta \\&=2\sin \theta -2\sin ^{3}\theta +\sin \theta -2\sin ^{3}\theta \\&=3\sin \theta -4\sin ^{3}\theta \end{aligned}}}
Dengan cara yang serupa, kita dapat mencari rumus untuk fungsi trigonometri sudut rangkap lainnya, seperti kosinus, tangen, kotangen, sekan, serta dengan kosekan.
Kita telah memperoleh rumus sudut rangkap dua dan sudut rangkap tiga (pada kotak di samping), maka kita beralih ke sudut
n
{\displaystyle n}
-rangkap, dimana
n
=
1
,
2
,
3
…
{\displaystyle n=1,2,3\dots }
. Dengan kata lain, rumus sudut
n
{\displaystyle n}
-rangkap dapat kita pakai untuk nilai
n
{\displaystyle n}
sembarang. Sebagai contoh, ketika
n
=
2
{\displaystyle n=2}
, maka kita memperoleh sudut dua rangkap dan begitu pula seterusnya.
Tanpa basa-basi, berikut adalah rumus sudut
n
{\displaystyle n}
-rangkap.[ 27]
sin
(
n
x
)
=
∑
k
=
0
n
(
n
k
)
cos
k
x
sin
n
−
k
x
sin
(
π
2
(
n
−
k
)
)
{\displaystyle \sin(nx)=\sum _{k=0}^{n}{\binom {n}{k}}\cos ^{k}x\sin ^{n-k}x\sin \left({\frac {\pi }{2}}(n-k)\right)}
cos
(
n
x
)
=
∑
k
=
0
n
(
n
k
)
cos
k
x
sin
n
−
k
x
cos
(
π
2
(
n
−
k
)
)
{\displaystyle \cos(nx)=\sum _{k=0}^{n}{\binom {n}{k}}\cos ^{k}x\sin ^{n-k}x\cos \left({\frac {\pi }{2}}(n-k)\right)}
Metode Chebyshev adalah algoritme rekursif yang mencari rumus sudut
n
{\displaystyle n}
-rangkap dengan diketahui nilai ke-
(
n
−
1
)
{\displaystyle (n-1)}
dan ke-
(
n
−
2
)
{\displaystyle (n-2)}
. Metode Chebyshev dapat dirumuskan untuk sudut rangkap fungsi sinus dan kosinus.[ 28]
sin
(
n
x
)
=
2
cos
x
sin
(
(
n
−
1
)
x
)
−
sin
(
(
n
−
2
)
x
)
cos
(
n
x
)
=
2
cos
x
cos
(
(
n
−
1
)
x
)
−
cos
(
(
n
−
2
)
x
)
tan
(
n
x
)
=
tan
(
(
n
−
1
)
x
)
+
tan
x
1
−
tan
(
(
n
−
1
)
x
)
tan
x
{\displaystyle {\begin{aligned}\sin(nx)&=2\cos x\sin((n-1)x)-\sin((n-2)x)\\\cos(nx)&=2\cos x\cos((n-1)x)-\cos((n-2)x)\\\tan(nx)&={\frac {\tan((n-1)x)+\tan x}{1-\tan((n-1)x)\tan x}}\end{aligned}}}
Berikut adalah sudut setengah rangkap, antara lain[ 29] [ 30]
sin
θ
2
=
±
1
−
cos
θ
2
cos
θ
2
=
±
1
+
cos
θ
2
tan
θ
2
=
csc
θ
−
cot
θ
=
±
1
−
cos
θ
1
+
cos
θ
=
sin
θ
1
+
cos
θ
=
1
−
cos
θ
sin
θ
=
−
1
±
1
+
tan
2
θ
tan
θ
=
tan
θ
1
+
sec
θ
cot
θ
2
=
csc
θ
+
cot
θ
=
±
1
+
cos
θ
1
−
cos
θ
=
sin
θ
1
−
cos
θ
=
1
+
cos
θ
sin
θ
{\displaystyle {\begin{aligned}\sin {\frac {\theta }{2}}&=\pm {\sqrt {\frac {1-\cos \theta }{2}}}\\[3pt]\cos {\frac {\theta }{2}}&=\pm {\sqrt {\frac {1+\cos \theta }{2}}}\\[3pt]\tan {\frac {\theta }{2}}&=\csc \theta -\cot \theta =\pm \,{\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}={\frac {\sin \theta }{1+\cos \theta }}\\[3pt]&={\frac {1-\cos \theta }{\sin \theta }}={\frac {-1\pm {\sqrt {1+\tan ^{2}\theta }}}{\tan \theta }}={\frac {\tan \theta }{1+\sec {\theta }}}\\[3pt]\cot {\frac {\theta }{2}}&=\csc \theta +\cot \theta =\pm \,{\sqrt {\frac {1+\cos \theta }{1-\cos \theta }}}={\frac {\sin \theta }{1-\cos \theta }}={\frac {1+\cos \theta }{\sin \theta }}\end{aligned}}}
Masih terdapat rumus-rumus lainnya berkaitan dengan sudut setengah rangkap. Berikut di antaranya:
tan
η
±
θ
2
=
sin
η
±
sin
θ
cos
η
+
cos
θ
tan
(
θ
2
+
π
4
)
=
sec
θ
+
tan
θ
1
−
sin
θ
1
+
sin
θ
=
|
1
−
tan
θ
2
|
|
1
+
tan
θ
2
|
{\displaystyle {\begin{aligned}\tan {\frac {\eta \pm \theta }{2}}&={\frac {\sin \eta \pm \sin \theta }{\cos \eta +\cos \theta }}\\[3pt]\tan \left({\frac {\theta }{2}}+{\frac {\pi }{4}}\right)&=\sec \theta +\tan \theta \\[3pt]{\sqrt {\frac {1-\sin \theta }{1+\sin \theta }}}&={\frac {\left|1-\tan {\frac {\theta }{2}}\right|}{\left|1+\tan {\frac {\theta }{2}}\right|}}\end{aligned}}}
Perkalian ke penjumlahan dan penjumlahan ke perkalian[ 31] [ 32]
2
cos
θ
cos
φ
=
cos
(
θ
−
φ
)
+
cos
(
θ
+
φ
)
{\displaystyle 2\cos \theta \cos \varphi ={\cos(\theta -\varphi )+\cos(\theta +\varphi )}}
2
sin
θ
sin
φ
=
cos
(
θ
−
φ
)
−
cos
(
θ
+
φ
)
{\displaystyle 2\sin \theta \sin \varphi ={\cos(\theta -\varphi )-\cos(\theta +\varphi )}}
2
sin
θ
cos
φ
=
sin
(
θ
+
φ
)
+
sin
(
θ
−
φ
)
{\displaystyle 2\sin \theta \cos \varphi ={\sin(\theta +\varphi )+\sin(\theta -\varphi )}}
2
cos
θ
sin
φ
=
sin
(
θ
+
φ
)
−
sin
(
θ
−
φ
)
{\displaystyle 2\cos \theta \sin \varphi ={\sin(\theta +\varphi )-\sin(\theta -\varphi )}}
tan
θ
tan
φ
=
cos
(
θ
−
φ
)
−
cos
(
θ
+
φ
)
cos
(
θ
−
φ
)
+
cos
(
θ
+
φ
)
{\displaystyle \tan \theta \tan \varphi ={\frac {\cos(\theta -\varphi )-\cos(\theta +\varphi )}{\cos(\theta -\varphi )+\cos(\theta +\varphi )}}}
∏
k
=
1
n
cos
θ
k
=
1
2
n
∑
e
∈
S
cos
(
e
1
θ
1
+
⋯
+
e
n
θ
n
)
dimana
S
=
{
1
,
−
1
}
n
{\displaystyle {\begin{aligned}\prod _{k=1}^{n}\cos \theta _{k}&={\frac {1}{2^{n}}}\sum _{e\in S}\cos(e_{1}\theta _{1}+\cdots +e_{n}\theta _{n})\\[6pt]&{\text{dimana }}S=\{1,-1\}^{n}\end{aligned}}}
∏
k
=
1
n
sin
(
θ
k
)
=
(
−
1
)
⌊
n
2
⌋
2
n
{
∑
e
∈
S
cos
(
e
1
θ
1
+
⋯
+
e
n
θ
n
)
∏
j
=
1
n
e
j
jika
n
genap
,
∑
e
∈
S
sin
(
e
1
θ
1
+
⋯
+
e
n
θ
n
)
∏
j
=
1
n
e
j
jika
n
ganjil
{\displaystyle \prod _{k=1}^{n}\sin(\theta _{k})={\frac {(-1)^{\lfloor {\frac {n}{2}}\rfloor }}{2^{n}}}{\begin{cases}\sum _{e\in S}\cos(e_{1}\theta _{1}+\cdots +e_{n}\theta _{n})\prod _{j=1}^{n}e_{j}\;{\text{jika}}\;n\;{\text{ genap}},\\\sum _{e\in S}\sin(e_{1}\theta _{1}+\cdots +e_{n}\theta _{n})\prod _{j=1}^{n}e_{j}\;{\text{jika}}\;n\;{\text{ ganjil}}\end{cases}}}
sin
θ
±
sin
φ
=
2
sin
(
θ
±
φ
2
)
cos
(
θ
∓
φ
2
)
{\displaystyle \sin \theta \pm \sin \varphi =2\sin \left({\frac {\theta \pm \varphi }{2}}\right)\cos \left({\frac {\theta \mp \varphi }{2}}\right)}
cos
θ
+
cos
φ
=
2
cos
(
θ
+
φ
2
)
cos
(
θ
−
φ
2
)
{\displaystyle \cos \theta +\cos \varphi =2\cos \left({\frac {\theta +\varphi }{2}}\right)\cos \left({\frac {\theta -\varphi }{2}}\right)}
cos
θ
−
cos
φ
=
−
2
sin
(
θ
+
φ
2
)
sin
(
θ
−
φ
2
)
{\displaystyle \cos \theta -\cos \varphi =-2\sin \left({\frac {\theta +\varphi }{2}}\right)\sin \left({\frac {\theta -\varphi }{2}}\right)}
Suatu penjumlahan fungsi trigonometri dapat dikonversikan menjadi perkalian fungsi trigonometri. Sebaliknya, perkalian fungsi trigonometri juga dapat dikonversikan menjadi penjumlahan fungsi trigonometri. Tabel berikut menunjukkan perkalian ke penjumlahan suatu fungsi trigonometri dan begitu juga dengan penjumlahan ke perkalian suatu fungsi trigonometri.
Contoh limit fungsi trigonometri yang paling sering digunakan adalah
lim
x
→
0
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}
Kita dapat membuktikan contoh pertama dengan menggunakan satuan lingkaran dan teorema apit . Terdapat contoh limit yang juga paling sering dipakai,
lim
x
→
0
1
−
cos
x
x
=
0
{\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=0}
Limit tersebut dapat dibuktikan melalui fungsi trigonometri tangen rangkap setengah. Untuk limit fungsi trigonometri lainnya, berikut adalah limit fungsi trigonometri beserta dengan pembuktiannya.
lim
x
→
0
sin
a
x
b
x
=
lim
x
→
0
a
x
sin
b
x
=
lim
x
→
0
sin
a
x
sin
b
x
=
a
b
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{bx}}=\lim _{x\to 0}{\frac {ax}{\sin bx}}=\lim _{x\to 0}{\frac {\sin ax}{\sin bx}}={\frac {a}{b}}}
[ nb 2]
Untuk suatu fungsi trigonometri, terdapat turunan dan antiturunan . Walakin, halaman ini hanya menjelaskan turunan dan antiturunan terhadap fungsi trigonometri yang bersifat dasar beserta fungsi inversnya. Untuk mengenai antiturunan fungsi trigonometri lainnya, lihat Daftar integral dari fungsi trigonometri dan Daftar integral dari fungsi invers trigonometri . Tabel berikut ini menunjukkan turunan dan antiturunan, antara lain:
Turunan
Integral
d
d
x
sin
x
=
cos
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\sin x=\cos x}
∫
sin
x
d
x
=
−
cos
x
+
C
{\displaystyle \int \sin x\,\mathrm {d} x=-\cos x+C}
d
d
x
cos
x
=
−
sin
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\cos x=-\sin x}
∫
cos
d
x
=
sin
x
+
C
{\displaystyle \int \cos \,\mathrm {d} x=\sin x+C}
d
d
x
tan
x
=
sec
2
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\tan x=\sec ^{2}x}
∫
tan
x
d
x
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan x\,\mathrm {d} x=-\ln \left|\cos x\right|+C}
d
d
x
csc
x
=
−
cot
x
csc
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\csc x=-\cot x\csc x}
∫
csc
x
d
x
=
−
ln
|
csc
x
+
cot
x
|
+
C
{\displaystyle \int \csc x\,\mathrm {d} x=-\ln \left|\csc x+\cot x\right|+C}
d
d
x
sec
x
=
tan
x
sec
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\sec x=\tan x\sec x}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec x\,\mathrm {d} x=\ln \left|\sec x+\tan x\right|+C}
d
d
x
cot
x
=
−
csc
2
x
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\cot x=-\csc ^{2}x}
∫
cot
x
d
x
=
ln
|
sin
x
|
+
C
{\displaystyle \int \cot x\,\mathrm {d} x=\ln \left|\sin x\right|+C}
Suatu fungsi trigonometri dapat dikonversikan sebagai deret, dimana bentuk tersebut merupakan representasinya. Deret tersebut dapat merupakan representasi dari deret Maclaurin datau deret Laurent . Keterangan mengenai rumus-rumus di bawah,
B
n
{\displaystyle B_{n}}
adalah bilangan Bernoulli dan
E
n
{\displaystyle E_{n}}
adalah bilangan Euler .
sin
x
=
∑
n
=
1
∞
(
−
1
)
n
−
1
x
2
n
−
1
(
2
n
−
1
)
!
{\displaystyle \sin x=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}x^{2n-1}}{(2n-1)!}}}
cos
x
=
∑
n
=
1
∞
(
−
1
)
n
x
2
n
(
2
n
)
!
{\displaystyle \cos x=\sum _{n=1}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}}
tan
x
=
∑
n
=
1
∞
(
−
1
)
n
−
1
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
{\displaystyle \tan x=\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}}}
[ 33]
csc
x
=
∑
n
=
0
∞
(
−
1
)
n
+
1
2
2
n
(
2
2
n
−
1
)
B
2
n
x
2
n
−
1
(
2
n
)
!
{\displaystyle \csc x=\sum _{n=0}^{\infty }{\frac {(-1)^{n+1}2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}}}
[ 34]
sec
x
=
∑
n
=
0
∞
(
−
1
)
n
E
2
n
x
2
n
−
1
(
2
n
)
!
{\displaystyle \sec x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}x^{2n-1}}{(2n)!}}}
[ 35]
cot
x
=
∑
n
=
0
∞
(
−
1
)
n
−
1
2
2
n
x
2
n
−
1
(
2
n
)
!
{\displaystyle \cot x=\sum _{n=0}^{\infty }{\frac {(-1)^{n-1}2^{2n}x^{2n-1}}{(2n)!}}}
[ 36]
^ Misalnya, invers fungsi trigonometri sinus, dinotasikan
arcsin
(
…
)
{\displaystyle \arcsin(\dots )}
atau
sin
−
1
(
…
)
{\displaystyle \sin ^{-1}(\dots )}
.
.
^ Sifat berikut juga memiliki beragam limit fungsi trigonometri yang sama dengan
a
b
{\displaystyle {\frac {a}{b}}}
. Limit fungsi di antaranya ialah
lim
x
→
0
tan
a
x
b
x
{\displaystyle \lim _{x\to 0}{\frac {\tan ax}{bx}}}
,
lim
x
→
0
a
x
tan
b
x
{\displaystyle \lim _{x\to 0}{\frac {ax}{\tan bx}}}
, dan
lim
x
→
0
tan
a
x
tan
b
x
{\displaystyle \lim _{x\to 0}{\frac {\tan ax}{\tan bx}}}
. Beberapa limit fungsi trigonometri ini serupa juga dengan
lim
x
→
0
sin
a
x
tan
b
x
=
lim
x
→
0
tan
a
x
sin
b
x
{\displaystyle \lim _{x\to 0}{\frac {\sin ax}{\tan bx}}=\lim _{x\to 0}{\frac {\tan ax}{\sin bx}}}
.
^ Hall, Arthur Graham; Frink, Fred Goodrich ([c1909]). Plane trigonometry . University of California Libraries. New York : Henry Holt. […] α = arcsin m
: It is frequently read "arc-sine m " or "anti-sine m ," since two mutually inverse functions are said each to be the anti-function of the other. […] A similar symbolic relation holds for the other trigonometric functions. […] This notation is universally used in Europe and is fast gaining ground in this country. A less desirable symbol, α = sin-1 m
, is still found in English and American texts. The notation α = inv sin m
is perhaps better still on account of its general applicability. […]
^ Abramowitz & Stegun 1972 , hlm. 73, 4.3.45
^ a b c "Abramowitz and Stegun. Page 78" . personal.math.ubc.ca . Diakses tanggal 2021-12-05 .
^ Weisstein, Eric W. "Covercosine" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-05 .
^ Weisstein, Eric W. "Haversine" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-05 .
^ Weisstein, Eric W. "Hacoversine" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-05 .
^ Weisstein, Eric W. "Havercosine" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-07 .
^ Weisstein, Eric W. "Hacovercosine" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-05 .
^ Weisstein, Eric W. "Gudermannian" . MathWorld .
^ "Trigonometric Identities | Boundless Algebra" . courses.lumenlearning.com . Diakses tanggal 2021-11-26 .
^ Abramowitz and Stegun, hlm. 73, 4.3.45
^ Abramowitz and Stegun, hlm. 72, 4.3.13–15
^ Abramowitz and Stegun, hlm. 72, 4.3.7–9
^ Abramowitz and Stegun, hlm. 80, 4.4.26–31
^ Weisstein, Eric W. "Cis" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-11-29 .
^ "Mathwords: Cis" . www.mathwords.com . Diakses tanggal 2021-11-29 .
^ "7.2: Sum and Difference Identities" . Mathematics LibreTexts (dalam bahasa Inggris). 2015-10-31. Diakses tanggal 2021-12-02 .
^ Abramowitz and Stegun, hlm. 72, 4.3.16
^ a b c d (Inggris) Weisstein, Eric W. "Trigonometric Addition Formulas" . MathWorld .
^ Abramowitz and Stegun, hlm. 72, 4.3.17
^ Abramowitz and Stegun, hlm. 72, 4.3.18
^ a b "Angle Sum and Difference Identities" . www.milefoot.com . Diakses tanggal 2019-10-12 .
^ Abramowitz and Stegun, hlm. 72, 4.3.19
^ Abramowitz and Stegun, hlm. 80, 4.4.32
^ Abramowitz and Stegun, hlm. 80, 4.4.33
^ Abramowitz and Stegun, hlm. 80, 4.4.34
^ Weisstein, Eric W. "Multiple-Angle Formulas" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-11-29 .
^ "Cosine, Sine and Tangent of Multiple Angles (Recursive Formula)" . trans4mind.com . Diakses tanggal 2021-12-02 .
^ Abramowitz and Stegun, hlm. 72, 4.3.20–22
^ (Inggris) Weisstein, Eric W. "Half-Angle Formulas" . MathWorld .
^ Abramowitz and Stegun, hlm. 72, 4.3.31–33
^ Abramowitz and Stegun, hlm. 72, 4.3.34–39
^ Weisstein, Eric W. "Tangent" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-07 .
^ Weisstein, Eric W. "Cosecant" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-07 .
^ Weisstein, Eric W. "Secant" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-07 .
^ Weisstein, Eric W. "Cotangent" . mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-12-07 .