सामग्री पर जाएँ

सदिश राशि

मुक्त ज्ञानकोश विकिपीडिया से
सदिशों को एक तीरयुक्त रेखा द्वारा निरूपित किया जाता है। इस रेखा की लम्बाई उस सदिश के परिणाम के समानुपाती होती है तथा तीर की दिशा इस सदिश की दिशा बताती है।

जिस भौतिक राशि में मात्रा (परिमाण) तथा दिशा दोनो निहित होते हैं उन्हें सदिश राशि कहते हैं। सदिश राशियों के उदाहरण हैं - वेग, बल, संवेग इत्यादि। जिन राशियों में केवल परिमाण होता है उन्हें अदिश राशि कहते हैं, जैसे - चाल, दूरी, द्रव्यमान, आयतन, ताप, समय इत्यादि।

सदिश राशियों को अदिश से अलग समझने का कारण यह है कि हमे कभी-कभी किसी राशि की दिशा का ज्ञान करना आवश्यक होता है। जैसे कि जमीन पर रखे किसी बक्से पर बल किस दिशा में लग रहा है और कितना लग रहा है - यह स्पष्टतया नहीं बताया जाय तो यह कहना कठिन है कि बक्सा खिसकेगा या नहीं। अगर हम बल उपर से नीचे की ओर लगाएं तो बक्सा कितना भी बल लगाने से नहीं खिसकेगा। पर यदि हम इसको क्षैतिज रूप से लगाएं तो एक नियत मात्रा के बल के बाद यह खिसकने लगेगा। गणित तथा भौतिक विज्ञान में सदिशों के बहुत उपयोग हैं।

सदिशों से सम्बन्धित गणित

[संपादित करें]

सदिश योग

[संपादित करें]
'"`UNIQ--postMath-00000001-QINU`"'

दो या अधिक सदिशों का योग निकालने के लिये ज्यामिति का उपयोग किया जाता है। उदाहरण के लिए, सामने के चित्र में दो सदिशों का योग निकालने के लिए 'त्रिभुज के नियम' का उपयोग किया गया है।

यदि सदिश अपने घटकों के रूप में दिये गये हों तो उनका योग घटकों का योग निकालकर किया जा सकता है। माना दो सदिश अपने n-घटकों के रूप में दिये गये हैं।

तथा

तो इनका योग निम्नलिखित होगा:


सदिशों के योग में निम्नलिखित दो नियमों का पालन होता है:

सदिशों का व्यकलन (घटाना)

[संपादित करें]
सदिशों का घटाना
सदिशों का घटाना

सदिशों का घटाना वैसे ही किया जाता है जैसे सदिशों का योग। सदिश और सदिश का अन्तर वास्तव में सदिश और का योग ही है। यदि सदिश अपने घटकों के रूप में दिये हों तो भी उसी तरह से उन्हें घटाया जाता है:

यदि दिये हुए सदिश ये हों

और

यदि हम किसी सदिश में उसके समान परिणाम किन्तु विपरीत दिशा वाले सदिश को जोड़ते हैं तो हमे शून्य सदिश प्राप्त होता है, जिसका परिमाण शून्य होता है।

सदिश गुणन

[संपादित करें]
एक सदिश में अदिश (स्केलर) 3 का गुणन के लिए उस सदिश को 3 बार जोड़ दिया जाता है।
सदिश का किसी संख्या से गुणन

किसी सदिश में किसी संख्या (स्केलर) का गुणा किया जाय तो परिणाम में जो सदिश मिलता है उसका परिमाण उस सदिश और उस संख्या के गुननफल के बराबर होता है जबकि उसकी दिशा मूल सदिश की दिशा ही रहती है। उदाहरण के लिये सदिश में संख्या का गुणा करने पर परिणामी सदिश के सभी घटक मूल सदिश के सभी घटकों के k गुना हो जायेंगे:

दो सदिशों का 'सदिश गुणन'

दो सदिशों के सदिश गुणन का परिणाम एक सदिश होता है। सदिश गुणन के लिए चिह्न का प्रयोग किया जाता है। सदिश गुणन से प्राप्त सदिश का परिमाण निम्नलिखित होता है:

जहाँ दोनों सदिशों के बीच का कोण है। परिणामी सदिश की दिशा दोनों सदिशों और के लम्बवत दिशा में होती है।

यदि दो सदिशों के तीन परस्पर लम्बवत घटक दिये गये हों, जैसे और तो उनके सदिश गुणन का परिणामी सदिश निम्नलिखित होगा:

दो सदिशों का 'अदिश गुणन'

दो सदिशों को गुणा करने का एक और तरीका है, जिसे 'अदिश गुणन' (स्केलर गुणन) कहते हैं। अदिश गुणन के परिणामस्वरुप एक अदिश राशि मिलती है, इसलिये इसका नाम 'अदिश गुणन' है। अदिश गुणन को बिन्दु (डॉट) द्वारा दर्शाया जाता है।

और

भौतिकी में बल तथा बल द्वारा वस्तु में किये गये विस्थापन का अदिश गुणन करके से कार्य की गणना की जाती है।

इन्हें भी देखें

[संपादित करें]

बाहरी कड़ियाँ

[संपादित करें]