-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
from typing import Dict | ||
from copy import deepcopy | ||
import torch | ||
from torch.nn import functional as F | ||
from config import xql_config | ||
from modules import Actor, EnsembledCritic, ValueFunction | ||
|
||
|
||
class XQL: | ||
def __init__(self, | ||
cfg: xql_config) -> None: | ||
self.cfg = cfg | ||
self.device = cfg.device | ||
|
||
self.actor = Actor(cfg.state_dim, | ||
cfg.action_dim, | ||
cfg.hidden_dim).to(self.device) | ||
self.actor_optim = torch.optim.AdamW(self.actor.parameters(), lr=cfg.actor_lr) | ||
self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.actor_optim, cfg.max_timesteps) | ||
|
||
self.critic = EnsembledCritic(cfg.state_dim, | ||
cfg.action_dim, | ||
cfg.hidden_dim).to(self.device) | ||
self.critic_optim = torch.optim.AdamW(self.critic.parameters(), lr=cfg.critic_lr) | ||
|
||
with torch.no_grad(): | ||
self.critic_target = deepcopy(self.critic).to(self.device) | ||
|
||
self.value_func = ValueFunction(cfg.state_dim, | ||
cfg.hidden_dim).to(self.device) | ||
self.value_optim = torch.optim.AdamW(self.value_func.parameters(), lr=cfg.value_func_lr) | ||
|
||
self.tau = cfg.tau | ||
self.discount = cfg.discount | ||
self.value_update_freq = cfg.value_update_freq | ||
self.noise_std = cfg.value_noise_std | ||
self.max_action = cfg.max_action | ||
self.beta = cfg.beta | ||
self.max_clip = cfg.grad_clip | ||
self.exp_adv_temperature = cfg.exp_adv_temperature | ||
self.advantage_max = cfg.advantage_max | ||
self.critic_delta_loss = cfg.critic_delta_loss | ||
|
||
self.total_iterations = 0 | ||
|
||
def train(self, | ||
states: torch.Tensor, | ||
actions: torch.Tensor, | ||
rewards: torch.Tensor, | ||
next_states: torch.Tensor, | ||
dones: torch.Tensor) -> Dict[str, float]: | ||
self.total_iterations += 1 | ||
logging_dict = dict() | ||
|
||
# value func step | ||
if not self.total_iterations % self.value_update_freq: | ||
noise = (torch.randn_like(actions) * self.noise_std).clamp(-self.max_action / 2, self.max_action / 2) | ||
noised_actions = (actions + noise).clamp(-self.max_action, self.max_action) | ||
|
||
with torch.no_grad(): | ||
tgt_q = self.critic_target(states, noised_actions).min(0).values | ||
|
||
value = self.value_func(states) | ||
|
||
value_loss = self.gumbel_loss(value, tgt_q, self.beta, self.max_clip) | ||
|
||
logging_dict["value_loss"] = value_loss.item() | ||
|
||
clip_ratio = (((tgt_q - value) / self.beta) > self.max_clip).float().mean() | ||
logging_dict["clip_ratio"] = clip_ratio.item() | ||
|
||
self.value_optim.zero_grad() | ||
value_loss.backward() | ||
self.value_optim.step() | ||
|
||
# actor step | ||
with torch.no_grad(): | ||
value = self.value_func(states) | ||
tgt_q = self.critic_target(states, actions).min(0).values | ||
|
||
exp_advantage = torch.exp((tgt_q - value.detach()) * self.exp_adv_temperature).clamp_max(self.advantage_max) | ||
bc_losses = -self.actor.log_prob(states, actions) | ||
actor_loss = (bc_losses * exp_advantage).mean() | ||
|
||
self.actor_optim.zero_grad() | ||
actor_loss.backward() | ||
self.actor_optim.step() | ||
self.lr_scheduler.step() | ||
|
||
logging_dict["actor_loss"] = actor_loss.item() | ||
logging_dict["actor_learning_rate"] = self.lr_scheduler.get_last_lr()[0] | ||
|
||
# critic step | ||
with torch.no_grad(): | ||
next_v = self.value_func(next_states) | ||
v_target = self.critic_target(states, actions).min(0).values | ||
|
||
q_target = rewards + (1.0 - dones) * self.discount * next_v | ||
|
||
current_q = self.critic(states, actions) | ||
critic_loss = 2 * F.huber_loss(current_q, q_target.squeeze(-1), delta=self.critic_delta_loss) | ||
|
||
self.critic_optim.zero_grad() | ||
critic_loss.backward() | ||
self.critic_optim.step() | ||
|
||
logging_dict["critic_loss"] = critic_loss.item() | ||
|
||
self.soft_critic_update() | ||
|
||
return logging_dict | ||
|
||
@staticmethod | ||
def gumbel_loss(prediction: torch.Tensor, | ||
target: torch.Tensor, | ||
beta: float = 1.0, | ||
clip: float = 7.0) -> torch.Tensor: | ||
z = (target - prediction) / beta | ||
z = z.clamp(-clip, clip) | ||
z_max = z.max(dim=0).values | ||
z_max = torch.where(z_max < -1.0, -1.0, z_max) | ||
z_max = z_max.detach() | ||
|
||
loss = torch.exp(z - z_max) - z * torch.exp(-z_max) - torch.exp(-z_max) | ||
return loss.mean() | ||
|
||
def soft_critic_update(self): | ||
for param, tgt_param in zip(self.critic.parameters(), self.critic_target.parameters()): | ||
tgt_param.data.copy_(self.tau * param.data + (1.0 - self.tau) * tgt_param.data) |