-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
212 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
from typing import Dict, Any, Tuple | ||
import torch | ||
from torch.nn import functional as F | ||
from copy import deepcopy | ||
from config import bear_config | ||
from modules import Actor, EnsembledCritic | ||
|
||
|
||
class BEAR: | ||
def __init__(self, | ||
cfg: bear_config, | ||
actor: Actor, | ||
critic: EnsembledCritic,) -> None: | ||
self.cfg = cfg | ||
self.device = cfg.device | ||
self.tau = cfg.tau | ||
self.discount = cfg.discount | ||
self.max_action = cfg.max_action | ||
|
||
self.actor = actor.to(self.device) | ||
self.actor_optim = torch.optim.AdamW(self.actor.parameters(), lr=cfg.actor_lr) | ||
|
||
self.critic = critic.to(self.device) | ||
self.critic_target = deepcopy(critic).to(self.device) | ||
self.critic_optim = torch.optim.AdamW(self.critic.parameters(), lr=cfg.critic_lr) | ||
|
||
self.mmd_kernel = self.gaussian_kernel if cfg.mmd_kernel_type == "gaussian" else self.laplacian_kernel | ||
self.mmd_sigma = cfg.mmd_sigma | ||
self.critic_lambda = cfg.critic_lambda | ||
|
||
self.target_entropy = -float(actor.action_dim) | ||
self.log_alpha = torch.tensor([0.0], dtype=torch.float32, device=self.device, requires_grad=True) | ||
self.alpha_optimizer = torch.optim.AdamW([self.log_alpha], lr=cfg.alpha_lr) | ||
self.alpha = self.log_alpha.exp().detach() | ||
|
||
self.log_lagrange = torch.randn((), requires_grad=True, device=self.device) | ||
self.lagrange_optim = torch.optim.AdamW([self.log_lagrange], lr=cfg.lagrange_lr) | ||
self.lagrange = self.log_lagrange.detach().exp() | ||
|
||
self.lagrange_threshold = cfg.lagrange_threshold | ||
|
||
self.total_iterations = 0 | ||
|
||
def train(self, | ||
states: torch.Tensor, | ||
actions: torch.Tensor, | ||
rewards: torch.Tensor, | ||
next_states: torch.Tensor, | ||
dones: torch.Tensor) -> Dict[str, float]: | ||
self.total_iterations += 1 | ||
logging_dict = dict() | ||
|
||
# critic step | ||
critic_loss, q_mean = self.critic_loss(states, | ||
actions, | ||
rewards, | ||
next_states, | ||
dones) | ||
self.critic_optim.zero_grad() | ||
critic_loss.backward() | ||
self.critic_optim.step() | ||
|
||
logging_dict["critic_loss"] = critic_loss.item() | ||
logging_dict["q_mean"] = q_mean | ||
|
||
# alpha step | ||
alpha_loss = self.alpha_loss(states) | ||
|
||
self.alpha_optimizer.zero_grad() | ||
alpha_loss.backward() | ||
self.alpha_optimizer.step() | ||
self.alpha = self.log_alpha.exp().detach() | ||
|
||
# actor step | ||
actor_loss, sac_loss, mmd_loss, actor_batch_entropy, q_std = self.actor_loss(states, actions) | ||
|
||
self.actor_optim.zero_grad() | ||
actor_loss.backward() | ||
self.actor_optim.step() | ||
|
||
logging_dict["actor_loss"] = actor_loss.mean().item() | ||
logging_dict["sac_loss"] = sac_loss | ||
logging_dict["actor_batch_entropy"] = actor_batch_entropy | ||
logging_dict["q_std"] = q_std | ||
logging_dict["mmd_loss"] = mmd_loss.mean().item() | ||
logging_dict["alpha"] = self.alpha.item() | ||
|
||
# lagrange step | ||
lagrange_loss = self.lagrange_loss(mmd_loss) | ||
|
||
self.lagrange_optim.zero_grad() | ||
lagrange_loss.backward() | ||
self.lagrange_optim.step() | ||
|
||
self.lagrange = self.log_lagrange.exp().detach() | ||
logging_dict["lagrange"] = self.lagrange.item() | ||
|
||
self.soft_critic_update() | ||
|
||
return logging_dict | ||
|
||
def lagrange_loss(self, mmd_loss: torch.Tensor) -> torch.Tensor: | ||
loss = self.log_lagrange.exp() * (mmd_loss - self.lagrange_threshold) | ||
|
||
return -loss.mean() | ||
|
||
def actor_loss(self, | ||
states: torch.Tensor, | ||
actions: torch.Tensor) -> Tuple[torch.Tensor, float, torch.Tensor, float, float]: | ||
pi, log_prob = self.actor(states, need_log_prob=True) | ||
q_values = self.critic(states, pi) | ||
|
||
q_value_min = q_values.min(0).values | ||
q_value_std = q_values.std(0) | ||
batch_entropy = -log_prob.mean().item() | ||
|
||
actor_loss = self.alpha * log_prob - q_value_min | ||
mmd_loss = self.mmd_loss(actions, pi) | ||
|
||
loss = actor_loss + self.lagrange * mmd_loss | ||
|
||
return loss.mean(), actor_loss.mean().item(), mmd_loss.detach(), batch_entropy, q_value_std.mean().item() | ||
|
||
def alpha_loss(self, states: torch.Tensor) -> torch.Tensor: | ||
with torch.no_grad(): | ||
_, log_prob = self.actor(states, need_log_prob=True) | ||
|
||
loss = -self.log_alpha * (log_prob + self.target_entropy) | ||
return loss.mean() | ||
|
||
def critic_loss(self, | ||
states: torch.Tensor, | ||
actions: torch.Tensor, | ||
rewards: torch.Tensor, | ||
next_states: torch.Tensor, | ||
dones: torch.Tensor) -> Tuple[torch.Tensor, float]: | ||
with torch.no_grad(): | ||
next_actions, next_action_log_prob = self.actor(next_states, need_log_prob=True) | ||
|
||
tgt_q = self.critic_target(next_states, next_actions) | ||
tgt_q = self.critic_lambda * tgt_q.min(0).values + (1 - self.critic_lambda) * tgt_q.max(0).values | ||
tgt_q = tgt_q - self.alpha * next_action_log_prob | ||
|
||
q_target = rewards + self.discount * (1.0 - dones) * tgt_q.unsqueeze(-1) | ||
|
||
current_q = self.critic(states, actions) | ||
|
||
critic_loss = F.mse_loss(current_q, q_target.squeeze(-1)) | ||
|
||
return critic_loss, current_q.mean().item() | ||
|
||
@staticmethod | ||
def gaussian_kernel(x: torch.Tensor, | ||
y: torch.Tensor, | ||
sigma: float) -> torch.Tensor: | ||
x = x.unsqueeze(1) # Add dimension for broadcasting | ||
y = y.unsqueeze(0) # Add dimension for broadcasting | ||
diff = torch.norm(x - y, dim=2) | ||
kernel = torch.exp(-torch.pow(diff, 2) / (2 * sigma * sigma)) | ||
|
||
return kernel | ||
|
||
@staticmethod | ||
def laplacian_kernel(x: torch.Tensor, | ||
y: torch.Tensor, | ||
sigma: float) -> torch.Tensor: | ||
x = x.unsqueeze(1) # Add dimension for broadcasting | ||
y = y.unsqueeze(0) # Add dimension for broadcasting | ||
diff = torch.norm(x - y, dim=2) | ||
kernel = torch.exp(-diff / sigma) | ||
return kernel | ||
|
||
def mmd_loss(self, | ||
x: torch.Tensor, | ||
y: torch.Tensor) -> torch.Tensor: | ||
xx = self.mmd_kernel(x, x, self.mmd_sigma) | ||
xy = self.mmd_kernel(x, y, self.mmd_sigma) | ||
yy = self.mmd_kernel(y, y, self.mmd_sigma) | ||
|
||
loss = xx - 2 * xy + yy | ||
return loss | ||
|
||
def soft_critic_update(self): | ||
for param, tgt_param in zip(self.critic.parameters(), self.critic_target.parameters()): | ||
tgt_param.data.copy_(self.tau * param.data + (1 - self.tau) * tgt_param.data) | ||
|
||
def state_dict(self) -> Dict[str, Any]: | ||
return { | ||
"actor": self.actor.state_dict(), | ||
"actor_optim": self.actor_optim.state_dict(), | ||
"critic": self.critic.state_dict(), | ||
"critic_target": self.critic_target.state_dict(), | ||
"critic_optim": self.critic_optim.state_dict(), | ||
"log_alpha": self.log_alpha, | ||
"alpha_optim": self.alpha_optimizer.state_dict(), | ||
"log_lagrange": self.log_lagrange, | ||
"lagrange_optim": self.lagrange_optim.state_dict(), | ||
"total_iterations": self.total_iterations | ||
} | ||
|
||
def load_state_dict(self, state_dict) -> None: | ||
self.actor.load_state_dict(state_dict["actor"]) | ||
self.actor_optim.load_state_dict(state_dict["actor_optim"]) | ||
self.critic.load_state_dict(state_dict["critic"]) | ||
self.critic_target.load_state_dict(state_dict["critic_target"]) | ||
self.critic_optim.load_state_dict(state_dict["critic_optim"]) | ||
self.log_alpha = state_dict["log_alpha"] | ||
self.alpha_optimizer.load_state_dict(state_dict["alpha_optim"]) | ||
self.log_lagrange = state_dict["log_lagrange"] | ||
self.lagrange_optim.load_state_dict(state_dict["lagrange_optim"]) | ||
self.total_iterations = state_dict["total_iterations"] | ||
|