-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
555 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
from dataclasses import dataclass | ||
import torch | ||
|
||
|
||
@dataclass | ||
class td7_config: | ||
# Experiment | ||
device: str = "cuda" if torch.cuda.is_available() else "cpu" | ||
dataset_name: str = "halfcheetah-medium-v2" | ||
seed: int = 42 | ||
|
||
max_timesteps: int = int(1e6) | ||
|
||
state_dim: int = 17 | ||
action_dim: int = 6 | ||
|
||
batch_size: int = 256 | ||
buffer_size: int = int(1e6) | ||
discount: float = 0.99 | ||
target_update_freq: int = 250 | ||
exploration_noise: float = 0.1 | ||
|
||
policy_noise: float = 0.2 | ||
noise_clip: float = 0.5 | ||
policy_freq: int = 2 | ||
|
||
max_action: float = 1.0 | ||
|
||
alpha: float = 0.4 | ||
min_priority: float = 1.0 | ||
|
||
lambda_coef: float = 0.1 | ||
|
||
embedding_dim: int = 256 | ||
hidden_dim: int = 256 | ||
encoder_lr: float = 3e-4 | ||
encoder_activation: str = "elu" | ||
actor_lr: float = 3e-4 | ||
actor_activation: str = "relu" | ||
critic_lr: float = 3e-4 | ||
critic_activation: str = "elu" | ||
|
||
normalize_actions: bool = True | ||
priority_buffer: bool = True | ||
|
||
project: str = "TD7" | ||
group: str = dataset_name | ||
name: str = dataset_name + "_" + str(seed) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
from math import sqrt | ||
import torch | ||
from torch import nn | ||
|
||
|
||
class AvgL1Norm(nn.Module): | ||
# class name is weird but i try to be consistent with the paper | ||
def __init__(self) -> None: | ||
super().__init__() | ||
|
||
def forward(self, x: torch.Tensor, eps: float = 1e-8): | ||
return x / x.abs().mean(dim=-1, keepdim=True).clamp_min(eps) | ||
|
||
|
||
class TD7Encoder(nn.Module): | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
embedding_dim: int = 256, | ||
hidden_dim: int = 256, | ||
activation: nn.Module = nn.ELU) -> None: | ||
super().__init__() | ||
|
||
self.f_layers = nn.Sequential( | ||
nn.Linear(state_dim, hidden_dim), | ||
activation(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
activation(), | ||
nn.Linear(hidden_dim, embedding_dim), | ||
AvgL1Norm() | ||
) | ||
|
||
self.g_layers = nn.Sequential( | ||
nn.Linear(embedding_dim + action_dim, hidden_dim), | ||
activation(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
activation(), | ||
nn.Linear(hidden_dim, embedding_dim) | ||
) | ||
|
||
def f(self, states: torch.Tensor) -> torch.Tensor: | ||
return self.f_layers(states) | ||
|
||
def g(self, | ||
embeddings: torch.Tensor, | ||
actions: torch.Tensor) -> torch.Tensor: | ||
input_ = torch.cat([embeddings, actions], dim=-1) | ||
return self.g_layers(input_) | ||
|
||
|
||
class TD7Actor(nn.Module): | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
embedding_dim: int = 256, | ||
hidden_dim: int = 256, | ||
activation: nn.Module = nn.ReLU) -> None: | ||
super().__init__() | ||
|
||
self.state_layers = nn.Sequential( | ||
nn.Linear(state_dim, hidden_dim), | ||
AvgL1Norm() | ||
) | ||
self.layers = nn.Sequential( | ||
nn.Linear(embedding_dim + hidden_dim, hidden_dim), | ||
activation(), | ||
nn.Linear(hidden_dim, hidden_dim), | ||
activation(), | ||
nn.Linear(hidden_dim, action_dim), | ||
nn.Tanh() | ||
) | ||
|
||
def forward(self, | ||
states: torch.Tensor, | ||
embeddings: torch.Tensor) -> torch.Tensor: | ||
out = self.state_layers(states) | ||
out = torch.cat([out, embeddings], dim=-1) | ||
return self.layers(out) | ||
|
||
def sample(self, | ||
states: torch.Tensor, | ||
embeddings: torch.Tensor) -> torch.Tensor: | ||
return torch.tanh(self.forward(states, embeddings)) | ||
|
||
|
||
class EnsembledLinear(nn.Module): | ||
def __init__(self, | ||
in_features: int, | ||
out_features: int, | ||
ensemble_size: int) -> None: | ||
super().__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features | ||
self.ensemble_size = ensemble_size | ||
|
||
self.weight = nn.Parameter(torch.empty(ensemble_size, in_features, out_features)) | ||
self.bias = nn.Parameter(torch.empty(ensemble_size, 1, out_features)) | ||
|
||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
for layer in range(self.ensemble_size): | ||
nn.init.kaiming_uniform_(self.weight[layer], a=sqrt(5)) | ||
|
||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0]) | ||
bound = 0 | ||
if fan_in > 0: | ||
bound = 1 / sqrt(fan_in) | ||
|
||
nn.init.uniform_(self.bias, -bound, bound) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
out = x @ self.weight + self.bias | ||
return out | ||
|
||
|
||
class TD7Critic(nn.Module): | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
embedding_dim: int = 256, | ||
hidden_dim: int = 256, | ||
num_critics: int = 2, | ||
activation: nn.Module = nn.ELU) -> None: | ||
super().__init__() | ||
|
||
self.num_critics = num_critics | ||
|
||
self.state_action_layers = nn.Sequential( | ||
EnsembledLinear(state_dim + action_dim, hidden_dim, ensemble_size=num_critics), | ||
AvgL1Norm() | ||
) | ||
self.layers = nn.Sequential( | ||
EnsembledLinear(2 * embedding_dim + hidden_dim, hidden_dim, ensemble_size=num_critics), | ||
activation(), | ||
EnsembledLinear(hidden_dim, hidden_dim, ensemble_size=num_critics), | ||
activation(), | ||
EnsembledLinear(hidden_dim, 1, ensemble_size=num_critics) | ||
) | ||
|
||
def forward(self, | ||
states: torch.Tensor, | ||
actions: torch.Tensor, | ||
zsa: torch.Tensor, | ||
zs: torch.Tensor) -> torch.Tensor: | ||
state_action = torch.cat([states, actions], dim=-1) | ||
out = self.state_action_layers(state_action) | ||
out = torch.cat([ | ||
out, | ||
zsa.repeat([self.num_critics] + [1] * len(zsa.shape)), | ||
zs.repeat([self.num_critics] + [1] * len(zs.shape)) | ||
], dim=-1) | ||
out = self.layers(out) | ||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
import os | ||
from typing import List, Dict, Tuple | ||
import numpy as np | ||
import torch | ||
|
||
|
||
class LAP: | ||
''' | ||
Loss-Adjusted Prioritized Experience Replay | ||
https://arxiv.org/abs/2007.06049 | ||
''' | ||
def __init__(self, | ||
state_dim: int, | ||
action_dim: int, | ||
device: str = "cpu", | ||
buffer_size: int = 1_000_000, | ||
max_action: float = 1.0, | ||
normalize_actions: bool = True, | ||
with_priority: bool = True) -> None: | ||
|
||
self.buffer_size = buffer_size | ||
self.device = device | ||
|
||
self.pointer = 0 | ||
self.size = 0 | ||
|
||
self.states = torch.zeros((buffer_size, state_dim), dtype=torch.float32, device=device) | ||
self.actions = torch.zeros((buffer_size, action_dim), dtype=torch.float32, device=device) | ||
self.rewards = torch.zeros((buffer_size, 1), dtype=torch.float32, device=device) | ||
self.next_states = torch.zeros((buffer_size, state_dim), dtype=torch.float32, device=device) | ||
self.dones = torch.zeros((buffer_size, 1), dtype=torch.float32, device=device) | ||
|
||
self.with_priortiy = with_priority | ||
|
||
if with_priority: | ||
self.priortiy = torch.zeros(buffer_size, device=device) | ||
self.max_priority = 1.0 | ||
|
||
self.normalizing_factor = max_action if normalize_actions else 1.0 | ||
|
||
@staticmethod | ||
def to_tensor(data: np.ndarray, device=None) -> torch.Tensor: | ||
if device is None: | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
return torch.tensor(data, dtype=torch.float32, device=device) | ||
|
||
def add_transition(self, | ||
state: torch.Tensor, | ||
action: torch.Tensor, | ||
reward: torch.Tensor, | ||
next_state: torch.Tensor, | ||
done: torch.Tensor): | ||
if not isinstance(state, torch.Tensor): | ||
state = self.to_tensor(state, self.device) | ||
action = self.to_tensor(action, self.device) | ||
reward = self.to_tensor(reward, self.device) | ||
next_state = self.to_tensor(next_state, self.device) | ||
done = self.to_tensor(done, self.device) | ||
|
||
|
||
self.states[self.pointer] = state | ||
self.actions[self.pointer] = action / self.normalizing_factor | ||
self.rewards[self.pointer] = reward | ||
self.next_states[self.pointer] = next_state | ||
self.dones[self.pointer] = done | ||
|
||
if self.with_priortiy: | ||
self.priortiy[self.pointer] = self.max_priority | ||
|
||
self.pointer = (self.pointer + 1) % self.buffer_size | ||
self.size = min(self.size + 1, self.buffer_size) | ||
|
||
def add_batch(self, | ||
states: List[torch.Tensor], | ||
actions: List[torch.Tensor], | ||
rewards: List[torch.Tensor], | ||
next_states: List[torch.Tensor], | ||
dones: List[torch.Tensor]): | ||
for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones): | ||
self.add_transition(state, action, reward, next_state, done) | ||
|
||
def sample(self, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | ||
if self.with_priortiy: | ||
cumsum = torch.cumsum(self.priortiy[:self.size], dim=0) | ||
value = torch.rand(size=(batch_size,), device=self.device) * cumsum[-1] | ||
self.indexes: np.ndarray = torch.searchsorted(cumsum, value).cpu().data.numpy() | ||
else: | ||
self.indexes = np.random.randint(0, self.size, size=batch_size) | ||
|
||
# states actions rewards next_states dones | ||
return ( | ||
self.states[self.indexes], | ||
self.actions[self.indexes], | ||
self.rewards[self.indexes], | ||
self.next_states[self.indexes], | ||
self.dones[self.indexes] | ||
) | ||
|
||
def update_priority(self, priority: torch.Tensor): | ||
self.priortiy[self.indexes] = priority.reshape(-1).detach() | ||
self.max_priority = max(float(priority.max()), self.max_priority) | ||
|
||
def update_max_priority(self): | ||
self.max_priority = float(self.priortiy[:self.size].max()) | ||
|
||
def from_d4rl(self, dataset: Dict[str, np.ndarray]): | ||
if self.size: | ||
print("Warning: loading data into non-empty buffer") | ||
n_transitions = dataset["observations"].shape[0] | ||
|
||
if n_transitions < self.buffer_size: | ||
self.states[:n_transitions] = self.to_tensor(dataset["observations"][-n_transitions:], self.device) | ||
self.actions[:n_transitions] = self.to_tensor(dataset["actions"][-n_transitions:], self.device) | ||
self.next_states[:n_transitions] = self.to_tensor(dataset["next_observations"][-n_transitions:], self.device) | ||
self.rewards[:n_transitions] = self.to_tensor(dataset["rewards"][-n_transitions:].reshape(-1, 1), self.device) | ||
self.dones[:n_transitions] = self.to_tensor(dataset["terminals"][-n_transitions:].reshape(-1, 1), self.device) | ||
|
||
else: | ||
self.buffer_size = n_transitions | ||
|
||
self.states = self.to_tensor(dataset["observations"][-n_transitions:], self.device) | ||
self.actions = self.to_tensor(dataset["actions"][-n_transitions:]) | ||
self.next_states = self.to_tensor(dataset["next_observations"][-n_transitions:], self.device) | ||
self.rewards = self.to_tensor(dataset["rewards"][-n_transitions:].reshape(-1, 1), self.device) | ||
self.dones = self.to_tensor(dataset["terminals"][-n_transitions:].reshape(-1, 1), self.device) | ||
|
||
self.size = n_transitions | ||
self.pointer = n_transitions % self.buffer_size | ||
|
||
if self.with_priortiy: | ||
self.priortiy = torch.ones(self.size).to(self.device) | ||
|
||
def from_json(self, json_file: str): | ||
import json | ||
|
||
if not json_file.endswith('.json'): | ||
json_file = json_file + '.json' | ||
|
||
json_file = os.path.join("json_datasets", json_file) | ||
output = dict() | ||
|
||
with open(json_file) as f: | ||
dataset = json.load(f) | ||
|
||
for k, v in dataset.items(): | ||
v = np.array(v) | ||
if k != "terminals": | ||
v = v.astype(np.float32) | ||
|
||
output[k] = v | ||
|
||
self.from_d4rl(output) |
Oops, something went wrong.