Skip to content

A PyTorch implementation of "Backdoor Attacks to Graph Neural Networks" (SACMAT'21)

Notifications You must be signed in to change notification settings

zaixizhang/graphbackdoor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Backdoor Attacks to Graph Neural Networks

A PyTorch implementation of "Backdoor Attacks to Graph Neural Networks" (SACMAT'21) [paper] [arxiv]

The code is based on the Pytorch implementation of [GIN]

Abstract

In this work, we propose the first backdoor attack to graph neural networks (GNN). Specifically, we propose a subgraph based backdoor attack to GNN for graph classification. In our backdoor attack, a GNN classifier predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph. Our empirical results on three real-world graph datasets show that our backdoor attacks are effective with a small impact on a GNN’s prediction accuracy for clean testing graphs. Moreover, we generalize a randomized smoothing based certified defense to defend against our backdoor attacks. Our empirical results show that the defense is effective in some cases but ineffective in other cases, highlighting the needs of new defenses for our backdoor attacks.

Requirements

matplotlib==3.1.1
numpy==1.17.1
torch==1.2.0
scipy==1.3.1
networkx==2.4
tqdm==4.47.0
pickle==0.7.5

Run the code

You can clone this repository and run the code

git clone https://github.com/zaixizhang/graphbackdoor.git
cd graphbackdoor
unzip dataset.zip
sh train.sh 

Cite

If you find this repo to be useful, please cite our paper. Thank you.

@inproceedings{10.1145/3450569.3463560,
author = {Zhang, Zaixi and Jia, Jinyuan and Wang, Binghui and Gong, Neil Zhenqiang},
title = {Backdoor Attacks to Graph Neural Networks},
url = {https://doi.org/10.1145/3450569.3463560},
doi = {10.1145/3450569.3463560},
series = {SACMAT '21}
}

About

A PyTorch implementation of "Backdoor Attacks to Graph Neural Networks" (SACMAT'21)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published